Makakuha ng detalyadong mga sagot sa iyong mga tanong gamit ang IDNStudy.com. Alamin ang mga maaasahang sagot sa iyong mga tanong mula sa aming malawak na kaalaman sa mga eksperto.

Find the Value of x so that x+2,5x+1,x+11 will form a geometric sequence.Justify your answer.Find the sum of the First 10 terms of the given sequence..Show your Solutions Plssssss Anyone??

Sagot :

Since these are terms of a geometric sequence, they have a common ratio so:
[tex] \frac{5x+1}{x+2} = \frac{x+11}{5x+1} \\ 25x^2+10x+1=x^2+13x+22 \\24x^2-3x-21=0 \\ 8x^2-x-7=0 \\ (8x+7)(x-1)=0[/tex]

Therefore x can be equal to -7/8 or 1.

The sum of n terms in a geometric sequence is equal to [tex] \frac{a_1(r^n-1)}{r-1} [/tex]

When x = -7/8, the first term would be 9/8 and the common ratio would be -3.
The sum of the first ten terms would be:
[tex]( \frac{9}{8})[(-3)^{10}-1]/(-3-1) \\ =( \frac{9}{8})( 59,048)/-4 \\ =-16,607.25[/tex]

When x = 1, the first term would be 3 and the ratio would be 2.
[tex]3(2^{10}-1)/(2-1) \\ =3(1023)/1 \\ =3069[/tex]