Answered

Sumali sa IDNStudy.com at makuha ang mga sagot ng eksperto. Anuman ang kahirapan ng iyong mga tanong, ang aming komunidad ay may mga sagot na kailangan mo.

find the value of x if the geometric mean of 2x and 19x-2 is 7x-2


Sagot :

The geometric mean is similar to the arithmetic mean (or average). The geometric mean of n terms is equal to the nth root of the n terms or :
[tex]GM= \sqrt[n]{a_1a_2a_3...a_n} [/tex]

So:
[tex] \sqrt{2x(19x-2)} =7x-2\\ \sqrt{38x^2-4x} =7x-2 \\ 38x^2-4x=49x^2-28x+4 \\ 0=11x^2-24x+4 \\ 0=(11x-2)(x-2)[/tex]

So x can be equal to 2 or 2/11. We check if these are extraneous roots (meaning they do not work).

When x = 2,
[tex] \sqrt{2(2)(19*2-2)} =7(2)-2 \\ \sqrt{4(36)}=12 \\ 12=12[/tex]
This is true therefore x can be 2.

When x = 2/11
[tex] \sqrt{2( \frac{2}{11})(19* \frac{2}{11} -2 )}=7( \frac{2}{11} )-2 \\ \sqrt{ \frac{4}{11}( \frac{16}{11}) } = -\frac{8}{11} \\ \frac{8}{11} = -\frac{8}{11} [/tex]
This is not true therefore x cannot be 2/11.

The only possible value of x is then 2.