Answered

Makakuha ng detalyadong mga sagot sa lahat ng iyong katanungan sa IDNStudy.com. Tuklasin ang mga maaasahang impormasyon sa anumang paksa sa pamamagitan ng aming network ng bihasang mga propesyonal.

find the value of x if the geometric mean of 2x and 19x-2 is 7x-2


Sagot :

The geometric mean is similar to the arithmetic mean (or average). The geometric mean of n terms is equal to the nth root of the n terms or :
[tex]GM= \sqrt[n]{a_1a_2a_3...a_n} [/tex]

So:
[tex] \sqrt{2x(19x-2)} =7x-2\\ \sqrt{38x^2-4x} =7x-2 \\ 38x^2-4x=49x^2-28x+4 \\ 0=11x^2-24x+4 \\ 0=(11x-2)(x-2)[/tex]

So x can be equal to 2 or 2/11. We check if these are extraneous roots (meaning they do not work).

When x = 2,
[tex] \sqrt{2(2)(19*2-2)} =7(2)-2 \\ \sqrt{4(36)}=12 \\ 12=12[/tex]
This is true therefore x can be 2.

When x = 2/11
[tex] \sqrt{2( \frac{2}{11})(19* \frac{2}{11} -2 )}=7( \frac{2}{11} )-2 \\ \sqrt{ \frac{4}{11}( \frac{16}{11}) } = -\frac{8}{11} \\ \frac{8}{11} = -\frac{8}{11} [/tex]
This is not true therefore x cannot be 2/11.

The only possible value of x is then 2.