Makakuha ng mga maaasahang sagot sa iyong mga tanong sa IDNStudy.com. Ang aming platform ng tanong at sagot ay idinisenyo upang magbigay ng mabilis at eksaktong sagot sa lahat ng iyong mga tanong.
Sagot :
formula of sum and difference of two cubes:
a cube + b cube = ( a + b )( a squared - ab + b squared )
a cube - b cube = ( a - b )( a squared + ab - b squaed )
a cube + b cube = ( a + b )( a squared - ab + b squared )
a cube - b cube = ( a - b )( a squared + ab - b squaed )
The formula in finding the sum or difference of two cubes is:
[tex]a^{3} + b^{2} = (a + b)(a^{2} - ab + b^{2} )[/tex]
[tex]a^{3} - b^{3} = (a - b)( a^{2} + ab + b^{2} )[/tex]
*Always remember that SDOTC always work with binomials.
Example:
[tex] 8 x^{6} + y^{3} [/tex]
First, we need to find the cube root of the terms of the binomial.
[tex]8x^{3} = 2 x^{2} [/tex]
[tex]y^{3} = y[/tex]
[tex]2x^{2} + y[/tex]
Next, we need to get the trinomial of the binomial on its special form.
Recall SOPAS
S - Square of the first term
O - Opposite sign of the second term
P - Product of the first and second term
A - Addition or the positive sign
S - Square of the last term or the second term
[tex](2 x^{2} + y)(4 x^{4} - 2 x^{2}y + y^{2} )[/tex]
[tex]a^{3} + b^{2} = (a + b)(a^{2} - ab + b^{2} )[/tex]
[tex]a^{3} - b^{3} = (a - b)( a^{2} + ab + b^{2} )[/tex]
*Always remember that SDOTC always work with binomials.
Example:
[tex] 8 x^{6} + y^{3} [/tex]
First, we need to find the cube root of the terms of the binomial.
[tex]8x^{3} = 2 x^{2} [/tex]
[tex]y^{3} = y[/tex]
[tex]2x^{2} + y[/tex]
Next, we need to get the trinomial of the binomial on its special form.
Recall SOPAS
S - Square of the first term
O - Opposite sign of the second term
P - Product of the first and second term
A - Addition or the positive sign
S - Square of the last term or the second term
[tex](2 x^{2} + y)(4 x^{4} - 2 x^{2}y + y^{2} )[/tex]
Salamat sa iyong aktibong pakikilahok. Patuloy na magbahagi ng impormasyon at kasagutan. Sama-sama tayong lumikha ng isang masiglang komunidad ng pagkatuto. Sa IDNStudy.com, kami ay nangako na magbigay ng pinakamahusay na mga sagot. Salamat at sa muling pagkikita.