IDNStudy.com, ang iyong gabay para sa malinaw at eksaktong mga sagot. Sumali sa aming interactive na platform ng tanong at sagot para sa mabilis at eksaktong tugon mula sa mga propesyonal sa iba't ibang larangan.

The length of the hypotenuse of a 45°-45°-90° triangle is 10√3 m. Find the length of the legs.

Sagot :

Answer:

[tex]\Huge\color{pink}\sf{Answer}[/tex]

The length of each two other legs is 56 m.

[tex]\Huge\color{pink}\sf{Solution}[/tex]

The 45°- 45°- 90° theorem states that the sides of this special right triangle has a ratio of n : n : n√2, where:

  1. n is the length of a side
  2. n√2 is the length of hypotenuse
  3. If the hypotenuse is 10√3, find the side n:

n√2 = 10√3

n = (10√3)/(√2)

Rationalize:

n = (10√3)(√2)/(√2)(√2)

n = 10(√6)/2

n = 5√6

Final Answer:

The length of each two other legs is 56 m.

Step-by-step explanation:

[tex]\large\color{skyblue}\sf{BuBbLeGhUrLs}[/tex]