IDNStudy.com, ang iyong mapagkukunan para sa mabilis at eksaktong mga sagot. Tuklasin ang malawak na hanay ng mga paksa at makahanap ng maaasahang sagot mula sa mga bihasang miyembro ng aming komunidad.
Sagot :
Answer:
Correct Question :-
[tex]\longmapsto \: \sf\dfrac{{(2cos^2A - 1)}^{2}}{cos^4A - sin^4A} =\: 1 - 2sin^2A[/tex]
Solution :-
Taking LHS :
[tex]\dashrightarrow \sf \dfrac{{(2cos^2A - 1)}^{2}}{cos^4A - sin^4A}[/tex]
[tex]\implies \sf \dfrac{{(2cos^2A - 1)}^{2}}{{(cos^2A)}^{2} - {(sin^2A)}^{2}}[/tex]
[tex]\implies \sf \dfrac{{(2cos^2A - 1)}^{2}}{(cos^2A + sin^2A)(cos^2A - sin^2A)} \: \bigg\lgroup a^2 - b^2 =\: (a + b)(a - b)\bigg \rgroup\\[/tex]
[tex]\implies \sf \dfrac{{(2cos^2A - 1)}^{2}}{(cos^2A - sin^2A)}[/tex]
[tex]\implies \sf \dfrac{\{2(1 - sin^2A)- 1\}^2}{1 - sin^2A - sin^2A} \: \bigg\lgroup cos^2A =\: 1 - sin^2A\bigg \rgroup\\[/tex]
[tex]\implies \sf \dfrac{(2 - 2sin^2A - 1)^2}{1 - 2sin^2A}[/tex]
[tex]\implies \sf \dfrac{(2 - 1 - 2sin^2A)^2}{1 - 2sin^2A}[/tex]
[tex]\implies \sf \dfrac{(1 - 2sin^2A)^2}{1 - 2sin^2A}[/tex]
[tex]\implies \sf \dfrac{\cancel{(1 - 2sin^2A)}(1 - 2sin^2A)}{\cancel{1 - 2sin^2A}}[/tex]
[tex]\implies \sf\bold{\red{1 - 2sin^2A}} \: \: \bigg\lgroup \bold{LHS}\bigg \rgroup[/tex]
Again, taking RHS :
[tex]\dashrightarrow \sf 1 - 2sin^2A[/tex]
[tex]\implies\sf\bold{\red{1 - 2sin^2A}} \: \: \bigg\lgroup \bold{RHS}\bigg \rgroup[/tex]
[tex]{\large{\pink{\bold{\underline{\leadsto\: LHS =\: RHS}}}}}[/tex]
[tex]\clubsuit \: \sf\boxed{\bold{\green{Hence, Proved}}}[/tex]
[tex]\rule{150}{2}[/tex]
Extra Formula Related to Trigonometry :
[tex]\diamondsuit\: \sf\bold{\purple{Trigonometry\: Identities\: :-}}[/tex]
[tex]\sf cos^2\theta + sin^2\theta =\: 1[/tex]
[tex]\sf 1 + tan^2\theta =\: sec^2\theta[/tex]
[tex]\sf 1 + cot^2\theta =\: cosec^2\theta[/tex]
[tex]\diamondsuit \: \sf\bold{\purple{Trigonometry \: Complementary\: Angle\: Identities\: :-}}[/tex]
[tex]\sf sin(90 - \theta) =\: cos\theta[/tex]
[tex]\sf cos(90 - \theta) =\: sin\theta[/tex]
[tex]\sf tan(90 - \theta) =\: cot\theta[/tex]
[tex]\sf cot(90 - \theta) =\: tan\theta[/tex]
[tex]\sf sec(90 - \theta) =\: cosec\theta[/tex]
[tex]\sf cosec(90 - \theta) =\: sec\theta[/tex]
Salamat sa iyong kontribusyon. Huwag kalimutang bumalik upang magtanong at matuto ng mga bagong bagay. Ang iyong kaalaman ay napakahalaga sa ating komunidad. Ang IDNStudy.com ay nangako na sasagutin ang lahat ng iyong mga tanong. Salamat at bisitahin kami palagi.