Sumali sa IDNStudy.com at makakuha ng mga sagot ng eksperto. Ang aming komunidad ay narito upang magbigay ng detalyadong sagot sa lahat ng iyong mga katanungan.
Sagot :
Answer:
Correct Question :-
[tex]\longmapsto \: \sf\dfrac{{(2cos^2A - 1)}^{2}}{cos^4A - sin^4A} =\: 1 - 2sin^2A[/tex]
Solution :-
Taking LHS :
[tex]\dashrightarrow \sf \dfrac{{(2cos^2A - 1)}^{2}}{cos^4A - sin^4A}[/tex]
[tex]\implies \sf \dfrac{{(2cos^2A - 1)}^{2}}{{(cos^2A)}^{2} - {(sin^2A)}^{2}}[/tex]
[tex]\implies \sf \dfrac{{(2cos^2A - 1)}^{2}}{(cos^2A + sin^2A)(cos^2A - sin^2A)} \: \bigg\lgroup a^2 - b^2 =\: (a + b)(a - b)\bigg \rgroup\\[/tex]
[tex]\implies \sf \dfrac{{(2cos^2A - 1)}^{2}}{(cos^2A - sin^2A)}[/tex]
[tex]\implies \sf \dfrac{\{2(1 - sin^2A)- 1\}^2}{1 - sin^2A - sin^2A} \: \bigg\lgroup cos^2A =\: 1 - sin^2A\bigg \rgroup\\[/tex]
[tex]\implies \sf \dfrac{(2 - 2sin^2A - 1)^2}{1 - 2sin^2A}[/tex]
[tex]\implies \sf \dfrac{(2 - 1 - 2sin^2A)^2}{1 - 2sin^2A}[/tex]
[tex]\implies \sf \dfrac{(1 - 2sin^2A)^2}{1 - 2sin^2A}[/tex]
[tex]\implies \sf \dfrac{\cancel{(1 - 2sin^2A)}(1 - 2sin^2A)}{\cancel{1 - 2sin^2A}}[/tex]
[tex]\implies \sf\bold{\red{1 - 2sin^2A}} \: \: \bigg\lgroup \bold{LHS}\bigg \rgroup[/tex]
Again, taking RHS :
[tex]\dashrightarrow \sf 1 - 2sin^2A[/tex]
[tex]\implies\sf\bold{\red{1 - 2sin^2A}} \: \: \bigg\lgroup \bold{RHS}\bigg \rgroup[/tex]
[tex]{\large{\pink{\bold{\underline{\leadsto\: LHS =\: RHS}}}}}[/tex]
[tex]\clubsuit \: \sf\boxed{\bold{\green{Hence, Proved}}}[/tex]
[tex]\rule{150}{2}[/tex]
Extra Formula Related to Trigonometry :
[tex]\diamondsuit\: \sf\bold{\purple{Trigonometry\: Identities\: :-}}[/tex]
[tex]\sf cos^2\theta + sin^2\theta =\: 1[/tex]
[tex]\sf 1 + tan^2\theta =\: sec^2\theta[/tex]
[tex]\sf 1 + cot^2\theta =\: cosec^2\theta[/tex]
[tex]\diamondsuit \: \sf\bold{\purple{Trigonometry \: Complementary\: Angle\: Identities\: :-}}[/tex]
[tex]\sf sin(90 - \theta) =\: cos\theta[/tex]
[tex]\sf cos(90 - \theta) =\: sin\theta[/tex]
[tex]\sf tan(90 - \theta) =\: cot\theta[/tex]
[tex]\sf cot(90 - \theta) =\: tan\theta[/tex]
[tex]\sf sec(90 - \theta) =\: cosec\theta[/tex]
[tex]\sf cosec(90 - \theta) =\: sec\theta[/tex]
Ang iyong presensya ay mahalaga sa amin. Patuloy na magbahagi ng iyong karanasan at kaalaman. Ang iyong ambag ay napakahalaga sa aming komunidad. Ang IDNStudy.com ang iyong mapagkakatiwalaang mapagkukunan ng mga sagot. Salamat at bumalik ka ulit.