Makakuha ng detalyadong mga sagot sa lahat ng iyong katanungan sa IDNStudy.com. Anuman ang kahirapan ng iyong mga tanong, ang aming komunidad ay may mga sagot na kailangan mo.

(2cos^2A-1)^2÷cos^4A-sin^4=1-2sin^2A
[tex](2 \cos(2) a - 1) {}^{2} \div \cos(4) - \sin(4) = 1 - 2 \sin(2) a[/tex]


Sagot :

Answer:

Correct Question :-

[tex]\longmapsto \: \sf\dfrac{{(2cos^2A - 1)}^{2}}{cos^4A - sin^4A} =\: 1 - 2sin^2A[/tex]

Solution :-

Taking LHS :

[tex]\dashrightarrow \sf \dfrac{{(2cos^2A - 1)}^{2}}{cos^4A - sin^4A}[/tex]

[tex]\implies \sf \dfrac{{(2cos^2A - 1)}^{2}}{{(cos^2A)}^{2} - {(sin^2A)}^{2}}[/tex]

[tex]\implies \sf \dfrac{{(2cos^2A - 1)}^{2}}{(cos^2A + sin^2A)(cos^2A - sin^2A)} \: \bigg\lgroup a^2 - b^2 =\: (a + b)(a - b)\bigg \rgroup\\[/tex]

[tex]\implies \sf \dfrac{{(2cos^2A - 1)}^{2}}{(cos^2A - sin^2A)}[/tex]

[tex]\implies \sf \dfrac{\{2(1 - sin^2A)- 1\}^2}{1 - sin^2A - sin^2A} \: \bigg\lgroup cos^2A =\: 1 - sin^2A\bigg \rgroup\\[/tex]

[tex]\implies \sf \dfrac{(2 - 2sin^2A - 1)^2}{1 - 2sin^2A}[/tex]

[tex]\implies \sf \dfrac{(2 - 1 - 2sin^2A)^2}{1 - 2sin^2A}[/tex]

[tex]\implies \sf \dfrac{(1 - 2sin^2A)^2}{1 - 2sin^2A}[/tex]

[tex]\implies \sf \dfrac{\cancel{(1 - 2sin^2A)}(1 - 2sin^2A)}{\cancel{1 - 2sin^2A}}[/tex]

[tex]\implies \sf\bold{\red{1 - 2sin^2A}} \: \: \bigg\lgroup \bold{LHS}\bigg \rgroup[/tex]

Again, taking RHS :

[tex]\dashrightarrow \sf 1 - 2sin^2A[/tex]

[tex]\implies\sf\bold{\red{1 - 2sin^2A}} \: \: \bigg\lgroup \bold{RHS}\bigg \rgroup[/tex]

[tex]{\large{\pink{\bold{\underline{\leadsto\: LHS =\: RHS}}}}}[/tex]

[tex]\clubsuit \: \sf\boxed{\bold{\green{Hence, Proved}}}[/tex]

[tex]\rule{150}{2}[/tex]

Extra Formula Related to Trigonometry :

[tex]\diamondsuit\: \sf\bold{\purple{Trigonometry\: Identities\: :-}}[/tex]

[tex]\sf cos^2\theta + sin^2\theta =\: 1[/tex]

[tex]\sf 1 + tan^2\theta =\: sec^2\theta[/tex]

[tex]\sf 1 + cot^2\theta =\: cosec^2\theta[/tex]

[tex]\diamondsuit \: \sf\bold{\purple{Trigonometry \: Complementary\: Angle\: Identities\: :-}}[/tex]

[tex]\sf sin(90 - \theta) =\: cos\theta[/tex]

[tex]\sf cos(90 - \theta) =\: sin\theta[/tex]

[tex]\sf tan(90 - \theta) =\: cot\theta[/tex]

[tex]\sf cot(90 - \theta) =\: tan\theta[/tex]

[tex]\sf sec(90 - \theta) =\: cosec\theta[/tex]

[tex]\sf cosec(90 - \theta) =\: sec\theta[/tex]

Ang iyong kontribusyon ay mahalaga sa amin. Huwag kalimutang bumalik upang magtanong at matuto ng mga bagong bagay. Ang iyong kaalaman ay napakahalaga sa ating komunidad. Bawat tanong ay may sagot sa IDNStudy.com. Salamat at sa muling pagkikita para sa mas maraming solusyon.