IDNStudy.com, kung saan ang iyong mga tanong ay may mabilis na sagot. Makakuha ng mabilis at eksaktong sagot sa iyong mga tanong mula sa aming mga eksperto na laging handang tumulong.
For number 4:
[tex] \small m^{\circ} + 2m^{\circ} + 3m^{\circ} + 4m^{\circ} + 5m^{\circ} + 6m^{\circ} + 7m^{\circ} + 8m^{\circ} = 360^{\circ} [/tex]
Solving for [tex] m,[/tex]
[tex] 36m^{\circ} = 360^{\circ} [/tex]
[tex] m = \dfrac{360}{36} [/tex]
[tex]\boxed{m = 10} [/tex]
For number 5:
Let [tex]2x[/tex] and [tex] 3x[/tex] be the measures of the other two angles of the pentagon.
[tex] 105^{\circ} + 135^{\circ} + 120^{\circ} + 2x + 3x = (5 - 2)(180^{\circ}) [/tex]
[tex] 360^{\circ} + 5x = 540^{\circ} [/tex]
[tex] 5x = 540^{\circ} - 360^{\circ} [/tex]
[tex] 5x = 180^{\circ} [/tex]
[tex] x = \dfrac{180^{\circ}}{5} [/tex]
[tex] x = 36^{\circ} [/tex]
Substituting the value of x, we get
[tex] 2x = 2(36^{\circ}) = \boxed{72^{\circ}} [/tex]
[tex] 3x = 3(36^{\circ}) = \boxed{108^{\circ}} [/tex]
Thus, the other two angles measure 72° and 108°.