IDNStudy.com, ang iyong destinasyon para sa mabilis at kaugnay na mga sagot. Hanapin ang mga solusyong kailangan mo nang mabilis at madali sa tulong ng aming mga eksperto.

how many different possible arrangements are there if there are 10 people and only 7 chairs are available​

Sagot :

[tex] \large\underline \mathcal{{QUESTION:}}[/tex]

how many different possible arrangements are there if there are 10 people and only 7 chairs are available?

[tex]\\[/tex]

[tex] \large\underline \mathcal{{SOLUTION:}}[/tex]

Using the Linear Permutation Formula:

  • Given that n=10 , r=7

[tex]\sf{P(n,r)=\frac{n!}{(n-r)!}}[/tex]

[tex]\sf{P(10,7)=\frac{10!}{(10-7)!}}[/tex]

[tex]\sf{P(10,7)=\frac{10!}{3!}}[/tex]

[tex]\sf{P(10,7)=\frac{10 \times 9 \times 8 \times 7 \times 6 \times 5\times 4 \times 3 \times 2 \times 1}{3 \times 2 \times 1}}[/tex]

[tex]\sf{P(10,7)=\frac{10 \times 9 \times 8 \times 7 \times 6 \times 5\times 4 \times \cancel{3 \times 2 \times 1}}{ \cancel{3 \times 2 \times 1}}}[/tex]

[tex]\sf{P(10,7)=10 \times 9 \times 8 \times 7 \times 6 \times 5\times 4 }[/tex]

[tex]\sf{P(10,7)=604,800}[/tex]

[tex]\\[/tex]

[tex] \large\underline \mathcal{{ANSWER:}}[/tex]

  • There are 604,800 possible arrangements

[tex]\footnotesize\begin{aligned}\textsf{Variation Formula:}\\ \sf V_k(n)=\frac{n!}{(n-k)!} \\ \\ \textsf{Solution : } \\ \\ \sf \: n = 10 \\ \sf \: k = 7 \\ \\ \sf \: V_7(10)=\frac{10!}{(10-7)!}=\frac{10!}{3!} \\ \\ \sf \: \frac{10 \times 9 \times 8 \times 7 \times 6 \times 5 \times 4 \times \cancel{ 3 \times 2 \times 1}}{ \cancel{3 \times 2 \times 1}} = 604,800 \\ \\ \boxed{\textsf{604,800 \: Possible}}\end{aligned}[/tex]