Suriin ang malawak na saklaw ng mga paksa sa IDNStudy.com. Tuklasin ang malalim na sagot sa iyong mga tanong mula sa aming komunidad ng mga bihasang propesyonal.

how many different possible arrangements are there if there are 10 people and only 7 chairs are available​

Sagot :

[tex] \large\underline \mathcal{{QUESTION:}}[/tex]

how many different possible arrangements are there if there are 10 people and only 7 chairs are available?

[tex]\\[/tex]

[tex] \large\underline \mathcal{{SOLUTION:}}[/tex]

Using the Linear Permutation Formula:

  • Given that n=10 , r=7

[tex]\sf{P(n,r)=\frac{n!}{(n-r)!}}[/tex]

[tex]\sf{P(10,7)=\frac{10!}{(10-7)!}}[/tex]

[tex]\sf{P(10,7)=\frac{10!}{3!}}[/tex]

[tex]\sf{P(10,7)=\frac{10 \times 9 \times 8 \times 7 \times 6 \times 5\times 4 \times 3 \times 2 \times 1}{3 \times 2 \times 1}}[/tex]

[tex]\sf{P(10,7)=\frac{10 \times 9 \times 8 \times 7 \times 6 \times 5\times 4 \times \cancel{3 \times 2 \times 1}}{ \cancel{3 \times 2 \times 1}}}[/tex]

[tex]\sf{P(10,7)=10 \times 9 \times 8 \times 7 \times 6 \times 5\times 4 }[/tex]

[tex]\sf{P(10,7)=604,800}[/tex]

[tex]\\[/tex]

[tex] \large\underline \mathcal{{ANSWER:}}[/tex]

  • There are 604,800 possible arrangements

[tex]\footnotesize\begin{aligned}\textsf{Variation Formula:}\\ \sf V_k(n)=\frac{n!}{(n-k)!} \\ \\ \textsf{Solution : } \\ \\ \sf \: n = 10 \\ \sf \: k = 7 \\ \\ \sf \: V_7(10)=\frac{10!}{(10-7)!}=\frac{10!}{3!} \\ \\ \sf \: \frac{10 \times 9 \times 8 \times 7 \times 6 \times 5 \times 4 \times \cancel{ 3 \times 2 \times 1}}{ \cancel{3 \times 2 \times 1}} = 604,800 \\ \\ \boxed{\textsf{604,800 \: Possible}}\end{aligned}[/tex]