IDNStudy.com, kung saan nagtatagpo ang mga eksperto para sagutin ang iyong mga tanong. Hanapin ang mga solusyong kailangan mo nang mabilis at tiyak sa tulong ng aming mga bihasang miyembro.

how many 5 digits number can be formed from digits 2,3,4,5,6, and 8?​

Sagot :

[tex] \large\underline \mathcal{{QUESTION:}}[/tex]

how many 5 digits number can be formed from digits 2,3,4,5,6, and 8?

[tex]\\[/tex]

[tex] \large\underline \mathcal{{SOLUTION:}}[/tex]

» 2,3,4,5,6,8 are 6 objects

[tex]\\[/tex]

  • Given that n = 6 and r = 5

[tex]\sf{P(n,r)=\frac{n!}{(n-r)!}}[/tex]

[tex]\sf{P(6,5)=\frac{6!}{(6-5)!}}[/tex]

[tex]\sf{P(6,5)=\frac{6!}{1!}}[/tex]

[tex]\sf{P(6,5)=\frac{6 \times 5 \times 4 \times 3 \times 2 \times 1}{1}}[/tex]

[tex]\sf{P(6,5) = 720}[/tex]

[tex]\\[/tex]

[tex] \large\underline \mathcal{{ANSWER:}}[/tex]

  • There are 720 ways

[tex] \footnotesize \begin {aligned} \bold{\textsf{Variation Formula :} }\\ \sf \: V_k(n)=\frac{n!}{(n-k)!}\\ \\ \sf \: n = 6 \\ \sf \: k = 5 \\ \\ \sf \: V_5(6)=\frac{6!}{(6-5)!} = \frac{6}{1} \\ \\ \sf \frac{6 \times 5 \times 4 \times 3 \times 2 \times \cancel1}{ \times \cancel 1} = 720 \\ \\ \boxed{\textsf{720 \: ways}}\end{aligned}[/tex]