IDNStudy.com, kung saan ang iyong mga tanong ay may mabilis na sagot. Sumali sa aming platform ng tanong at sagot upang makakuha ng eksaktong tugon sa lahat ng iyong mahahalagang tanong.

in how many different ways can be letter of the word RUMOUR be arranged if the consonants always come together​

Sagot :

[tex] \large\underline \mathcal{{QUESTION:}}[/tex]

In how many different ways can be letter of the word RUMOUR be arranged if the consonants always come together?

[tex]\\[/tex]

[tex] \large\underline \mathcal{{SOLUTION:}}[/tex]

Consonants = RMR = 1 entity

Other letters = UOU = 3 entities

[tex]\\[/tex]

Now , There are 4 entities. In here we will solve for the distinguishable permutation. Because UOU , the letter U is repeated twice. And thesame goes for the Consonants:

  • Total entities = 3+1 = 4
  • Repeated Other letters = 2 (U)
  • Total Consonants = RMR = 3
  • Repeated Consonant = 2 (R)

[tex]\\[/tex]

[tex]\sf{P=\frac{(Total\:entities)!}{(Repeated(U))!}\times\frac{(Total\:Consonants)!}{(Repeated(R))!}}[/tex]

[tex]\sf{P=\frac{4!}{2!}\times\frac{3!}{2!}}[/tex]

[tex]\sf{P=\frac{4\times3\times2\times1}{2\times1}\times\frac{3\times2\times1}{2\times1}}[/tex]

[tex]\sf{P=\frac{4\times3\times\cancel{2\times1}}{\cancel{2\times1}}\times\frac{3\times\cancel{2\times1}}{\cancel{2\times1}}}[/tex]

[tex]\sf{P=4\times3\times3}[/tex]

[tex]\sf{P=36}[/tex]

[tex]\\[/tex]

[tex] \large\underline \mathcal{{ANSWER:}}[/tex]

  • There are 36 ways