IDNStudy.com, kung saan ang iyong mga tanong ay natutugunan ng mga maaasahang sagot. Ang aming komunidad ay handang magbigay ng malalim at praktikal na mga solusyon sa lahat ng iyong mga katanungan.

complete the proof of the following. write your answer on the space provided​

Complete The Proof Of The Following Write Your Answer On The Space Provided class=

Sagot :

[tex]ANSWER:

\begin{gathered} \small \begin{array}{l} 1.\: \bold{Given:}\: \textsf{Triangles }DEF\textsf{ and }GHI\textsf{ such that} \\ \qquad\qquad\:\triangle DEF \cong \triangle GHI \\ \\ \quad\bold{Prove:}\: \triangle GHI \cong \triangle DEF \\ \\ \quad\bold{Proof:} \end{array} \end{gathered}1.Given:Triangles DEF and GHI such that△DEF≅△GHIProve:△GHI≅△DEFProof:

\begin{gathered} \scriptsize \begin{array}{| l | l |} \hline \quad\quad\quad \text{STATEMENTS} & \quad\quad\quad\!\text{REASONS} \\ \hline \triangle DEF \cong \triangle GHI & \quad\quad\quad\quad\!\! \textsf{Given} \\ \hline \scriptsize {\!\!\begin{array}{l} \overline{DE}\cong \overline{GH};\: \overline{EF}\cong \overline{HI};\: \overline{DF}\cong \overline{GI} \\ \angle D \cong \angle G;\: \angle E \cong \angle H;\: \angle F \cong \angle I\end{array}} \negthickspace & \negthickspace {\!\!\begin{array}{c}1.\textsf{ Corresponding Parts of} \\ \:\:\:\textsf{Congruent Triangles are} \\ \:\:\: \textsf{Congruent (CPCTC)} \end{array}} \\ \hline \scriptsize{\!\!\begin{array}{l} \overline{GH}\cong \overline{DE};\: \overline{HI}\cong \overline{EF};\: \overline{GI}\cong \overline{DF} \\ \angle G \cong \angle D;\: \angle H \cong \angle E;\: \angle I \cong \angle F \!\! \end{array}} & {\!\!\begin{array}{c} 2.\textsf{ Symmetric Property of} \\ \:\:\:\textsf{Congruence}\end{array}\!\!} \\ \hline \triangle GHI \cong \triangle DEF & {\begin{array}{c} \textsf{Definition of Congruent}\\ \textsf{Triangles}\end{array}} \\ \hline \end{array} \\ \: \end{gathered}STATEMENTS△DEF≅△GHIDE≅GH;EF≅HI;DF≅GI∠D≅∠G;∠E≅∠H;∠F≅∠IGH≅DE;HI≅EF;GI≅DF∠G≅∠D;∠H≅∠E;∠I≅∠F△GHI≅△DEFREASONSGiven1. Corresponding Parts ofCongruent Triangles areCongruent (CPCTC)2. Symmetric Property ofCongruenceDefinition of CongruentTriangles

\begin{gathered} \small \begin{array}{l} 2.\: \bold{Given:}\: \overline{AB}\cong \overline{CD},\: \overline{AB} \perp \overline{BD},\: \overline{CD} \perp \overline{BD}, \\ \qquad\qquad\: E\textsf{ is the midpoint of }\overline{BD} \\ \\ \quad\bold{Prove:}\: \triangle ABE \cong \triangle CDE \\ \\ \quad \bold{Proof:} \end{array} \end{gathered}2.Given:AB≅CD,AB⊥BD,CD⊥BD,E is the midpoint of BDProve:△ABE≅△CDEProof:

\begin{gathered} \scriptsize \begin{array}{| l | l |} \hline \quad \text{STATEMENTS} & \qquad\qquad \text{REASONS} \\ \hline {\begin{array}{l} \overline{AB} \cong \overline{CD} \\ \overline{AB} \perp \overline{BD} \end{array}} & \:\: \textsf{Given} \\ \hline \angle B\textsf{ is a right angle} & 3. \textsf{ Definition of Perpendicularity} \\ \hline \overline{CD} \perp \overline{BD} & 4. \textsf{ Given} \\ \hline \angle D\textsf{ is a right angle} & \textsf{ Definition of Perpendicularity} \\ \hline \angle B \cong \angle D & 5.\textsf{ Right Angle Congruence Theorem} \\ \hline E\textsf{ is the midpoint of }\overline{BD} & \:\:\textsf{Given} \\ \hline \overline{BE}\cong \overline{DE} & 6.\textsf{ Definition of Midpoint} \\ \hline \triangle ABE \cong \triangle CDE & \textsf{SAS Congruence Postulate} \\ \hline \end{array} \end{gathered}STATEMENTSAB≅CDAB⊥BD∠B is a right angleCD⊥BD∠D is a right angle∠B≅∠DE is the midpoint of BDBE≅DE△ABE≅△CDEREASONSGiven3. Definition of Perpendicularity4. Given Definition of Perpendicularity5. Right Angle Congruence TheoremGiven6. Definition of MidpointSAS Congruence Postulate

[/tex]

[tex]\large{\colorbox{black}{\color{pink}{ShareYourKnowledge}}}[/tex]

slide to see:>