Magtanong at makakuha ng maaasahang mga sagot sa IDNStudy.com. Hanapin ang mga solusyong kailangan mo nang mabilis at madali sa tulong ng aming mga eksperto.

find the next four terms in the sequence 1,4,9,16,25,__,___,__,__,​

Sagot :

Answer:

36,49,66,85

Step-by-step explanation:

just add 2

sana makatulong

[tex] \large\underline \mathcal{{QUESTION:}}[/tex]

  • find the next four terms in the sequence 1,4,9,16,25,__,___,__,__,

[tex] \large\underline \mathcal{{ANSWER:}}[/tex]

  • The next four terms are 36,49,64,and 81

[tex]\\[/tex]

[tex] \large\underline \mathcal{{SOLUTION:}}[/tex]

First , We will solve for the nth term or the formula of the quadratic sequence.

  • an²+bn+c

[tex]\\[/tex]

Using the formula , the first term is 1 , so we will substitute the value of 1 to n. Then equate to the first term or (1)

[tex] \sf an²+bn+c=1 \\ \sf a(1)²+b(1)+c=1 \\ \boxed{a+b+c=1} \: \longleftarrow \mathtt{eq1}[/tex]

Again , Substitute 2 to n and equate to the second term or (4)

[tex] \sf an²+bn+c=4 \\ \sf a(2)²+b(2)+c=4 \\ \boxed{4a+2b+c=4} \: \longleftarrow \mathtt{eq2}[/tex]

Lastly , Substitute 3 to n and equate to the third term or (9)

[tex] \sf an²+bn+c=9 \\ \sf a(3)²+b(3)+c=9 \\\boxed{9a+3b+c=9} \: \longleftarrow \mathtt{eq3}[/tex]

[tex]\\[/tex]

Now that we got the three equations we will subtract them.

Equation 2 - Equation 1

[tex] \: \: \: \: \: \: \: 4a+2b+c=4\\-\underline{\: \: \: \: \: \: \: \: a+b+c=1} \\ = \boxed{3a + b = 3}[/tex]

Equation 3 - Equation 2

[tex] \: \: \: \: \: 9a+3b+c=9 \\-\underline{ \: \: 4a+2b+c=4} \\ = \boxed{5a + b = 5}[/tex]

[tex]\\[/tex]

Solving the value of a to the differences of the equation by elimination:

[tex] \: \: \: \: \: 5a+b=5 \\\underline{- \: \: \: 3a+b=3} \\ \: \: \: \: \: \: \: \: \: \: \: \: \: 2a = 2 \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \:\frac{2a}{2} = \frac{2}{2} \\ \\ \: \implies \boxed{a = 1}[/tex]

[tex]\\[/tex]

Now , we get the value of a , thus we will find for the values of b and c. Let's substitute the value of a to the equation:

[tex] \: \: \: \: \: 5(1)+b=5 \\\underline{ + \: \: \: 3(1)+b=3} \\ \: \: \: \: \: \: \: \: \: \: \: \: \: 8 +2 b = 8 \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: 2b = 8 - 8 \\ \: \: \: \: \: \: \: 2b = 0 \\ \\ \: \implies\boxed{b = 0}[/tex]

[tex]\\[/tex]

Lastly , We will substitute to any of the first equation:

[tex] \: \: \: \: \: \: \: \: \:a + b + c = 1 \\ (1) + (0) + c = 1 \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: 1 + c = 1 \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: c = 1 - 1 \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \boxed{c = 0}[/tex]

[tex]\\[/tex]

a = 1 , b = 0 , c = 0

Summing up , We get the formula:

  • an²+bn+c
  • 1n²+0(n)+0

[tex]\\[/tex]

Now that we got the formula: We will find for the next four terms:

[tex]\\[/tex]

Substitute n = 6

  • n² = 6² = 36

[tex]\\[/tex]

Substitute n = 7

  • n² = 7² = 49

[tex]\\[/tex]

Substitute n = 8

  • n² = 8² = 64

[tex]\\[/tex]

Substitute n = 9

  • n² = 9² = 81

[tex]\\[/tex]

  • Therefore , The sequence is 1,4,9,16,25,36,49,64,81