IDNStudy.com, kung saan ang iyong mga tanong ay natutugunan ng mga eksperto. Ang aming komunidad ay handang magbigay ng malalim at maaasahang mga sagot, anuman ang kahirapan ng iyong mga katanungan.
Sagot :
Answer:
36,49,66,85
Step-by-step explanation:
just add 2
sana makatulong
[tex] \large\underline \mathcal{{QUESTION:}}[/tex]
- find the next four terms in the sequence 1,4,9,16,25,__,___,__,__,
[tex] \large\underline \mathcal{{ANSWER:}}[/tex]
- The next four terms are 36,49,64,and 81
[tex]\\[/tex]
[tex] \large\underline \mathcal{{SOLUTION:}}[/tex]
First , We will solve for the nth term or the formula of the quadratic sequence.
- an²+bn+c
[tex]\\[/tex]
Using the formula , the first term is 1 , so we will substitute the value of 1 to n. Then equate to the first term or (1)
[tex] \sf an²+bn+c=1 \\ \sf a(1)²+b(1)+c=1 \\ \boxed{a+b+c=1} \: \longleftarrow \mathtt{eq1}[/tex]
Again , Substitute 2 to n and equate to the second term or (4)
[tex] \sf an²+bn+c=4 \\ \sf a(2)²+b(2)+c=4 \\ \boxed{4a+2b+c=4} \: \longleftarrow \mathtt{eq2}[/tex]
Lastly , Substitute 3 to n and equate to the third term or (9)
[tex] \sf an²+bn+c=9 \\ \sf a(3)²+b(3)+c=9 \\\boxed{9a+3b+c=9} \: \longleftarrow \mathtt{eq3}[/tex]
[tex]\\[/tex]
Now that we got the three equations we will subtract them.
Equation 2 - Equation 1
[tex] \: \: \: \: \: \: \: 4a+2b+c=4\\-\underline{\: \: \: \: \: \: \: \: a+b+c=1} \\ = \boxed{3a + b = 3}[/tex]
Equation 3 - Equation 2
[tex] \: \: \: \: \: 9a+3b+c=9 \\-\underline{ \: \: 4a+2b+c=4} \\ = \boxed{5a + b = 5}[/tex]
[tex]\\[/tex]
Solving the value of a to the differences of the equation by elimination:
[tex] \: \: \: \: \: 5a+b=5 \\\underline{- \: \: \: 3a+b=3} \\ \: \: \: \: \: \: \: \: \: \: \: \: \: 2a = 2 \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \:\frac{2a}{2} = \frac{2}{2} \\ \\ \: \implies \boxed{a = 1}[/tex]
[tex]\\[/tex]
Now , we get the value of a , thus we will find for the values of b and c. Let's substitute the value of a to the equation:
[tex] \: \: \: \: \: 5(1)+b=5 \\\underline{ + \: \: \: 3(1)+b=3} \\ \: \: \: \: \: \: \: \: \: \: \: \: \: 8 +2 b = 8 \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: 2b = 8 - 8 \\ \: \: \: \: \: \: \: 2b = 0 \\ \\ \: \implies\boxed{b = 0}[/tex]
[tex]\\[/tex]
Lastly , We will substitute to any of the first equation:
[tex] \: \: \: \: \: \: \: \: \:a + b + c = 1 \\ (1) + (0) + c = 1 \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: 1 + c = 1 \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: c = 1 - 1 \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \boxed{c = 0}[/tex]
[tex]\\[/tex]
a = 1 , b = 0 , c = 0
Summing up , We get the formula:
- an²+bn+c
- 1n²+0(n)+0
- n²
[tex]\\[/tex]
Now that we got the formula: We will find for the next four terms:
[tex]\\[/tex]
Substitute n = 6
- n² = 6² = 36
[tex]\\[/tex]
Substitute n = 7
- n² = 7² = 49
[tex]\\[/tex]
Substitute n = 8
- n² = 8² = 64
[tex]\\[/tex]
Substitute n = 9
- n² = 9² = 81
[tex]\\[/tex]
- Therefore , The sequence is 1,4,9,16,25,36,49,64,81
Natutuwa kami na ikaw ay bahagi ng aming komunidad. Magpatuloy sa pagtatanong at pagbibigay ng mga sagot. Sama-sama tayong lumikha ng isang mas matibay na samahan. Para sa mabilis at maasahang mga sagot, bisitahin ang IDNStudy.com. Nandito kami upang tumulong sa iyo.