Answered

IDNStudy.com, ang iyong mapagkukunan para sa mabilis at eksaktong mga sagot. Ang aming komunidad ay nagbibigay ng eksaktong sagot upang matulungan kang maunawaan at malutas ang anumang problema.

In triangle PQR, P= 78°, R=60°, p = 16 in. Find angle Q and the measures of sides r and q.

Sagot :

[tex]\bold {SOLVING \: OBLIQUE \: TRIANGLE}[/tex]

[tex]\bold {Given:}[/tex]

  • P = 78°
  • R = 60°
  • p = 16 in.

[tex]\bold {Unknown:}[/tex]

  • angle Q
  • side r
  • side q

[tex]\bold {Solution:}[/tex]

Solving for ∠Q:

The sum of the interior angles of a triangle is 180°, thus,

[tex] \begin{aligned} \large \tt m \angle P + m \angle R + m \angle Q = 180° \\ \\ \large \tt 78° + 60° + m\angle Q = 180°\end{aligned} \\ \\ \large \tt m \angle Q=180°–78° - 60° \\ \\ \large \green{\boxed{\tt m \angle Q=42°}}[/tex]

[tex]\\[/tex]

Solving for r:

Using the Law of Sines,

[tex] \large \tt \frac{sinP}{p} = \frac{sinR}{r} \\ \\ \large \tt \frac{sin78}{16} = \frac{sin60}{r} \\ \\ \large \tt (sin78)(r) = (sin60)(16) \\ \\ \large \tt \frac{ \cancel{(sin78)}(r)}{ \cancel{(sin78)}} = \frac{(sin60)(16)}{(sin78)} \\ \\ \large\tt r=\frac{(sin60)(16)}{(sin78)} \\ \\ \large \green{ \boxed{\tt r =14.166in }}[/tex]

[tex]\\[/tex]

Solving for q:

Using the Law of Sines,

[tex] \large \tt \frac{sinP}{p} = \frac{sinQ}{q} \\ \\ \large \tt \frac{sin78}{16} = \frac{sin42}{q} \\ \\ \large \tt (sin78)(q) = (sin42)(16) \\ \\ \large \tt \frac{ \cancel{(sin78)}(q)}{ \cancel{(sin78)}} = \frac{(sin42)(16)}{(sin78)} \\ \\ \large\tt q=\frac{(sin42)(16)}{(sin78)} \\ \\ \large \green{ \boxed{\tt q =10.945in }}[/tex]

[tex]\\[/tex]

[tex]\bold {Final\:Answer:}[/tex] [tex]{\boxed{\begin{array}{l} \large \tt Q= \green{42°}\\ \\ \large \tt r=\green{14.166 \: in.} \\ \\ \large \tt q = \green{10.945 \: in.} \end{array}}}[/tex]

[tex]\\ \\[/tex]

#CarryOnLearning