Answered

IDNStudy.com, ang iyong gabay para sa mga sagot ng komunidad at eksperto. Ang aming mga eksperto ay nagbibigay ng mabilis at eksaktong sagot upang tulungan kang maunawaan at malutas ang anumang problema.

In triangle PQR, P= 78°, R=60°, p = 16 in. Find angle Q and the measures of sides r and q.

Sagot :

[tex]\bold {SOLVING \: OBLIQUE \: TRIANGLE}[/tex]

[tex]\bold {Given:}[/tex]

  • P = 78°
  • R = 60°
  • p = 16 in.

[tex]\bold {Unknown:}[/tex]

  • angle Q
  • side r
  • side q

[tex]\bold {Solution:}[/tex]

Solving for ∠Q:

The sum of the interior angles of a triangle is 180°, thus,

[tex] \begin{aligned} \large \tt m \angle P + m \angle R + m \angle Q = 180° \\ \\ \large \tt 78° + 60° + m\angle Q = 180°\end{aligned} \\ \\ \large \tt m \angle Q=180°–78° - 60° \\ \\ \large \green{\boxed{\tt m \angle Q=42°}}[/tex]

[tex]\\[/tex]

Solving for r:

Using the Law of Sines,

[tex] \large \tt \frac{sinP}{p} = \frac{sinR}{r} \\ \\ \large \tt \frac{sin78}{16} = \frac{sin60}{r} \\ \\ \large \tt (sin78)(r) = (sin60)(16) \\ \\ \large \tt \frac{ \cancel{(sin78)}(r)}{ \cancel{(sin78)}} = \frac{(sin60)(16)}{(sin78)} \\ \\ \large\tt r=\frac{(sin60)(16)}{(sin78)} \\ \\ \large \green{ \boxed{\tt r =14.166in }}[/tex]

[tex]\\[/tex]

Solving for q:

Using the Law of Sines,

[tex] \large \tt \frac{sinP}{p} = \frac{sinQ}{q} \\ \\ \large \tt \frac{sin78}{16} = \frac{sin42}{q} \\ \\ \large \tt (sin78)(q) = (sin42)(16) \\ \\ \large \tt \frac{ \cancel{(sin78)}(q)}{ \cancel{(sin78)}} = \frac{(sin42)(16)}{(sin78)} \\ \\ \large\tt q=\frac{(sin42)(16)}{(sin78)} \\ \\ \large \green{ \boxed{\tt q =10.945in }}[/tex]

[tex]\\[/tex]

[tex]\bold {Final\:Answer:}[/tex] [tex]{\boxed{\begin{array}{l} \large \tt Q= \green{42°}\\ \\ \large \tt r=\green{14.166 \: in.} \\ \\ \large \tt q = \green{10.945 \: in.} \end{array}}}[/tex]

[tex]\\ \\[/tex]

#CarryOnLearning