Answered

IDNStudy.com, ang iyong mapagkukunan para sa malinaw at maaasahang mga sagot. Alamin ang mga detalyadong sagot mula sa mga bihasang miyembro ng aming komunidad na sumasaklaw sa iba't ibang paksa para sa lahat ng iyong pangangailangan.

Let ABC be a 3-digit number such that its digits A, B, and C form an arithmetic sequence. What is the largest integer that divides all numbers of the form ABCABC?

Sagot :

Let x be the first number in the arithmetic sequence
and y be the difference 

The numbers are:
A,  B  ,  C
x, x+y, x+2y

We add all to check if it is divisible by 3 or 9

[tex]x+x+y+x+2y=3x+3y=3(x+y)[/tex]

Therefore in in the number ABCABC one factor is 3

ABCABC is divisible by 1001 because [tex]ABCABC/1001=ABC[/tex]

Therefore there are two numbers that are always factors of ABCABC which are 3 and 1001, therefore the largest integer that divide all numbers in the form ABCABC is 3*1001 or 3003