IDNStudy.com, kung saan ang iyong mga tanong ay natutugunan ng mga eksaktong sagot. Makakuha ng mga kumpletong sagot sa lahat ng iyong mga tanong mula sa aming network ng mga eksperto.

find the 20th term in 1,10,25,46,73​

Sagot :

Answer:

[tex] 3 {(20)}^{2} + 1 \\ = 1201[/tex]

di ko po alam tama nakalimutan ko na po hehe

Nzmidn

SOLUTION:

Observe that:

  • 10 - 1 = 9
  • 25 - 10 = 14
  • 46 - 25 = 19
  • 73 - 46 = 24

And if we try to subtract their differences once again,

  • 14 - 9 = 5
  • 19 - 14 = 5
  • 24 - 19 = 5

Since the terms have the same 2nd difference, this sequence is called quadratic sequence.

The formula in finding the nth term of a quadratic sequence is

[tex]a_n = an^2 + bn + c[/tex]

where a, b, c satisfy the conditions below:

  • [tex]a = \frac{\textsf{2nd common difference}}{2}[/tex]
  • [tex]3a + b = \textsf{2nd term} - \textsf{1st term}[/tex]
  • [tex]a + b + c = \textsf{1st term}[/tex]

Solving for a,

Knowing that the 2nd common difference is 5, [tex]a = \frac{5}{2}[/tex]

Solving for b,

[tex]3a + b = \textsf{2nd term} - \textsf{1st term}[/tex]

[tex]3(\frac{5}{2}) +b = 10 - 1[/tex]

[tex]\frac{15}{2} + b = 9[/tex]

[tex]b = 9 - \frac{15}{2}[/tex]

[tex]b = \frac{3}{2}[/tex]

Solving for c,

[tex]a + b + c = \textsf{1st term}[/tex]

[tex]\frac{5}{2} + \frac{3}{2} + c = 1[/tex]

[tex]\frac{8}{2} + c = 1[/tex]

[tex]4 + c = 1[/tex]

[tex]c = 1- 4[/tex]

[tex]c = -3[/tex]

Then plug in the value of a, b, and c to the formula to solve for 20th term

[tex]a_n = an^2 + bn + c[/tex]

[tex]a_{20} = \frac{5}{2}(20^2) + \frac{3}{2}(20) - 3[/tex]

[tex]a_{20} = \frac{5}{2}(400) + 3(10) - 3[/tex]

[tex]a_{20} = 1000 + 300 - 3[/tex]

[tex]a_{20} = \boxed{1297}[/tex]

ANSWER:

1297

#kqwezkbmxcbvaoijsf