Sumali sa IDNStudy.com at makuha ang mabilis at kaugnay na mga sagot. Makakuha ng mga kumpletong sagot sa lahat ng iyong mga tanong mula sa aming network ng mga eksperto.
Sagot :
Answer:
This is an example of a problem that involvesPermutation with Repetition.
Notice that we have 7 available parking spaces for only 5 bicycles. This means that if we call our 5 bicycles B1, B2, B3, B4, and B5, the following are just few examples that are distinct from each other:
B1-B2-B3-B4-B5-space-space
B1-space-B2-B3-B4-space-B5
space-B1-B2-B3-B4-B5-space
In other words, aside from the 5 bicycles we are arranging, we are also taking into account the arrangement of the 2 extra spaces.
So really, we are arranging 7 things here with two objects (the spaces) being alike. This can be solved by translating it as
\frac{7!}{1!1!1!1!1!2!}
1!1!1!1!1!2!
7!
where
7! represents the 7 things we are arranging
the five 1!'s represent each of the distinct 5 bicycles; and
2! represents the 2 spaces that are identical.
Therefore, the number of ways that 5 bicycles can parked in parking lot with 7 spaces is \frac{7!}{1!1!1!1!1!2!}= \frac{7!}{2!}= \frac{(7)(6)(5)(4)(3)(2)(1)}{(2)(1)}=2520
1!1!1!1!1!2!
7!
=
2!
7!
=
(2)(1)
(7)(6)(5)(4)(3)(2)(1)
=2520 ways.
Ang iyong kontribusyon ay napakahalaga sa amin. Patuloy na magbahagi ng impormasyon at kasagutan. Sama-sama tayong magtutulungan upang makamit ang mas mataas na antas ng karunungan. Ang IDNStudy.com ang iyong mapagkakatiwalaang mapagkukunan ng mga sagot. Salamat at bumalik ka ulit.