IDNStudy.com, ang iyong destinasyon para sa malinaw at mabilis na mga sagot. Makakuha ng hakbang-hakbang na mga gabay para sa lahat ng iyong teknikal na tanong mula sa mga miyembro ng aming komunidad.
Sagot :
Answer:
This is an example of a problem that involvesPermutation with Repetition.
Notice that we have 7 available parking spaces for only 5 bicycles. This means that if we call our 5 bicycles B1, B2, B3, B4, and B5, the following are just few examples that are distinct from each other:
B1-B2-B3-B4-B5-space-space
B1-space-B2-B3-B4-space-B5
space-B1-B2-B3-B4-B5-space
In other words, aside from the 5 bicycles we are arranging, we are also taking into account the arrangement of the 2 extra spaces.
So really, we are arranging 7 things here with two objects (the spaces) being alike. This can be solved by translating it as
\frac{7!}{1!1!1!1!1!2!}
1!1!1!1!1!2!
7!
where
7! represents the 7 things we are arranging
the five 1!'s represent each of the distinct 5 bicycles; and
2! represents the 2 spaces that are identical.
Therefore, the number of ways that 5 bicycles can parked in parking lot with 7 spaces is \frac{7!}{1!1!1!1!1!2!}= \frac{7!}{2!}= \frac{(7)(6)(5)(4)(3)(2)(1)}{(2)(1)}=2520
1!1!1!1!1!2!
7!
=
2!
7!
=
(2)(1)
(7)(6)(5)(4)(3)(2)(1)
=2520 ways.
Salamat sa iyong presensya. Patuloy na magtanong at magbahagi ng iyong mga ideya. Ang iyong kaalaman ay mahalaga sa ating komunidad. Sa IDNStudy.com, kami ay nangako na magbigay ng pinakamahusay na mga sagot. Salamat at sa muling pagkikita.