IDNStudy.com, ang komunidad ng pagbabahagi ng kaalaman at mga sagot. Hanapin ang mga solusyong kailangan mo nang mabilis at tiyak sa tulong ng aming mga bihasang miyembro.
Sagot :
[tex] \large \bold{PROBLEM:}[/tex]
[tex]\lim_{n \rightarrow \infty} \frac{1}{n} \sum_{j=1}^{ n } (1 - e^{\frac{-jt}{n}} )[/tex]
[tex] \large \bold{SOLUTION:}[/tex]
[tex] \bold{look \: at \: \frac{1}{n} \sum_{j=1}^{ n } (1 - e^{\frac{-jt}{n}} )} \\ \bold{e^{\frac{-jt}{n}} =\sum_{k=0}^{\infty} \frac{(-jt/n)^k}{k!}} \\ \bold{1-e^{\frac{-jt}{n}} =-\sum_{k=1}^{\infty} \frac{(-jt/n)^{k}}{k!}} \\ \\ \bold{\begin{align} \sum_{j=1}^{ n } (1 - e^{\frac{-jt}{n}} ) &=\sum_{j=1}^{ n }\sum_{k=1}^{\infty} -\frac{(-jt/n)^{k}}{k!}\\ &=-\sum_{k=1}^{\infty}\sum_{j=1}^{ n } \frac{(-jt/n)^{k}}{k!}\\ &=-\sum_{k=1}^{\infty}\frac{(-t/n)^{k}}{k!}\sum_{j=1}^{ n } j^{k}\\ \end{align}}[/tex]
[tex] \large \bold{Using \: this, \: the \: sum \: is}[/tex]
[tex] \bold{\begin{align} -\sum_{k=1}^{\infty}\frac{(-t/n)^{k}}{k!} (\frac{n^{k+1}}{k+1}+O(n^k)) &=-n \sum_{k=1}^{\infty}\frac{(-t)^{k}}{(k+1)!} +O(\sum_{k=1}^{\infty}\frac{(-t)^{k}}{k!})\\ &=\frac{-n}{-t} \sum_{k=1}^{\infty}\frac{(-t)^{k+1}}{(k+1)!} +O(e^{-t}-1)\\ &=\frac{n}{t} (e^{-t}-1+t) +O(1-e^{-t})\\ \end{align}}[/tex]
[tex] \bold{The \: final \: result \: is \: 1/n1/n \: times \: this \: or}[/tex]
[tex] \bold{\frac{1}{t} (e^{-t}-1+t) +O((1-e^{-t})/n)} \\ \bold{as \: n \to \infty} \\ \bold{this \: become \: 1-(1-e^{-t})/t}[/tex]
[tex]\purple{\begin{gathered} \gamma \\ \huge \boxed{ \ddot \smile}\end{gathered}} \: \pink{\begin{gathered} \gamma \\ \huge \boxed{ \ddot \smile}\end{gathered}} \: \red{\begin{gathered} \gamma \\ \huge \boxed{ \ddot \smile}\end{gathered}} \: \orange{\begin{gathered} \gamma \\ \huge \boxed{ \ddot \smile}\end{gathered}}[/tex]
[tex] \Large \mathbb{SOLUTION:} [/tex]
[tex] \begin{array}{l} \displaystyle \sf \lim_{n \to \infty} \frac{1}{n} \sum_{j=1}^{ n } (1 - e^{\frac{-jt}{n}}) \\ \\ =\small \displaystyle \sf \lim_{n \to \infty} \frac{1}{n} \left(n - \dfrac{e^{\frac{-t}{n}}(e^{-t} - 1)}{e^{\frac{-t}{n}} - 1}\cdot \dfrac{e^{\frac{t}{n}}}{e^{\frac{t}{n}}} \right) \textsf{(By Geometric Series)} \\ \\ = \displaystyle \sf 1 - \lim_{n \to \infty} \dfrac{e^{-t}-1}{n(1 - e^{\frac{t}{n}})} \\ \\ = \displaystyle \sf 1 - (e^{-t}-1) \lim_{n \to \infty} \dfrac{1}{n(1 - e^{\frac{t}{n}})} \\ \\ = \displaystyle \sf 1 - (e^{-t}-1) \lim_{n \to \infty} \dfrac{\frac{1}{n}}{1 - e^{\frac{t}{n}}} \\ \\ \textsf{Let }\sf u = \dfrac{1}{n}. \\ \\ \quad \displaystyle \sf \lim_{n \to \infty} \frac{1}{n} = 0, \textsf{ so }u \to 0. \\ \\ = \displaystyle \sf 1 - (e^{-t}-1) \lim_{u \to 0} \dfrac{u}{1 - e^{tu}} \\ \\ \textsf{Substituting }\sf u =0, \textsf{the limit results to one of} \\ \textsf{the indeterminate forms }\sf \frac{0}{0}. \\ \\ \textsf{Applying l'Hôpital's rule, we get} \\ \\ = \displaystyle \sf 1 - (e^{-t}-1) \lim_{u \to 0} \dfrac{\frac{d}{du} u}{\frac{d}{du}(1 - e^{tu})} \\ \\ = \displaystyle \sf 1 - (e^{-t}-1) \lim_{u \to 0} -\dfrac{1}{te^{tu}} \\ \\ = \displaystyle \sf 1 - (e^{-t}-1)\left(-\dfrac{1}{te^{t(0)}}\right) \\ \\ = \displaystyle \sf 1 - (e^{-t}-1)\left(-\dfrac{1}{t}\right) \\ \\ = \displaystyle \boxed{\sf 1 + \dfrac{e^{-t}-1}{t}} \end{array} [/tex]
Salamat sa iyong kontribusyon. Huwag kalimutang bumalik upang magtanong at matuto ng mga bagong bagay. Ang iyong kaalaman ay mahalaga sa ating komunidad. Para sa mabilis at maasahang mga sagot, bisitahin ang IDNStudy.com. Nandito kami upang tumulong sa iyo.