Suriin ang IDNStudy.com para sa mabilis at kaugnay na mga sagot. Makakuha ng impormasyon mula sa aming mga eksperto, na nagbibigay ng maaasahang sagot sa lahat ng iyong mga tanong.

a set of data that meets a set of condition​

Sagot :

Answer:

Recognize, describe, and calculate the measures of the center of data: mean, median, and mode.

The “center” of a data set is also a way of describing location. The two most widely used measures of the “center” of the data are the mean (average) and the median. To calculate the mean weight of [latex]50[/latex] people, add the [latex]50[/latex] weights together and divide by [latex]50[/latex]. To find the median weight of the [latex]50[/latex] people, order the data and find the number that splits the data into two equal parts. The median is generally a better measure of the center when there are extreme values or outliers because it is not affected by the precise numerical values of the outliers. The mean is the most common measure of the center.

NOTE

The words “mean” and “average” are often used interchangeably. The substitution of one word for the other is common practice. The technical term is “arithmetic mean” and “average” is technically a center location. However, in practice among non-statisticians, “average” is commonly accepted for “arithmetic mean.”

When each value in the data set is not unique, the mean can be calculated by multiplying each distinct value by its frequency and then dividing the sum by the total number of data values. The letter used to represent the

sample mean is an [latex]x[/latex] with a bar over it (read “[latex]x[/latex] bar”): [latex]\displaystyle\overline{{x}}[/latex].

The Greek letter [latex]μ[/latex] (pronounced “mew”) represents the population mean. One of the requirements for the sample mean to be a good estimate of the population mean is for the sample taken to be truly random.

To see that both ways of calculating the mean are the same, consider the sample:

[latex]1[/latex]; [latex]1[/latex]; [latex]1[/latex]; [latex]2[/latex]; [latex]2[/latex]; [latex]3[/latex]; [latex]4[/latex]; [latex]4[/latex]; [latex]4[/latex]; [latex]4[/latex]; [latex]4[/latex]

[latex]\displaystyle\overline{{x}}=\frac{{{1}+{1}+{1}+{2}+{2}+{3}+{4}+{4}+{4}+{4}+{4}}}{{11}}={2.7}[/latex]

[latex]\displaystyle\overline{{x}}=\frac{{{3}{({1})}+{2}{({2})}+{1}{({3})}+{5}{({4})}}}{{11}}={2.7}[/latex]

In the second example, the frequencies are [latex]3[/latex], [latex]2[/latex], [latex]1[/latex], and [latex]5[/latex].

You can quickly find the location of the median by using the expression [latex]\displaystyle\frac{{{n}+{1}}}{{2}}[/latex].

The letter [latex]n[/latex] is the total number of data values in the sample. If [latex]n[/latex] is an odd number, the median is the middle value of the ordered data (ordered smallest to largest). If [latex]n[/latex] is an even number, the median is equal to the two middle values added together and divided by two after the data has been ordered. For example, if the total number of data values is [latex]97[/latex], then [latex]\displaystyle\frac{{{n}+{1}}}{{2}}=\frac{{{97}+{1}}}{{2}}={49}[/latex]. The median is the [latex]49[/latex]th value in the ordered data. If the total number of data values is [latex]100[/latex], then [latex]\displaystyle\frac{{{n}+{1}}}{{2}}=\frac{{{100}+{1}}}{{2}}[/latex] = [latex]50.5[/latex]. The median occurs midway between the [latex]50[/latex]th and [latex]51[/latex]st values. The location of the median and the value of the median are not the same. The upper case letter [latex]M[/latex] is often used to represent the median. The next example illustrates the location of the median and the value of the median.

EXAMPLE

AIDS data indicating the number of months a patient with AIDS lives after taking a new antibody drug are as follows (smallest to largest):

[latex]3[/latex]; [latex]4[/latex]; [latex]8[/latex]; [latex]8[/latex]; [latex]10[/latex]; [latex]11[/latex]; [latex]12[/latex]; [latex]13[/latex]; [latex]14[/latex]; [latex]15[/latex]; [latex]15[/latex]; [latex]16[/latex]; [latex]16[/latex]; [latex]17[/latex]; [latex]17[/latex]; [latex]18[/latex]; [latex]21[/latex]; [latex]22[/latex]; [latex]22[/latex]; [latex]24[/latex]; [latex]24[/latex]; [latex]25[/latex]; [latex]26[/latex]; [latex]26[/latex]; [latex]27[/latex]; [latex]27[/latex]; [latex]29[/latex]; [latex]29[/latex]; [latex]31[/latex]; [latex]32[/latex]; [latex]33[/latex]; [latex]33[/latex]; [latex]34[/latex]; [latex]34[/latex]; [latex]35[/latex]; [latex]37[/latex]; [latex]40[/latex]; [latex]44[/latex]; [latex]44[/latex]; [latex]47[/latex]

Calculate the mean and the median.

Explanation:

Hope it help :)