Tuhrwidn
Answered

Makakuha ng mabilis at maaasahang mga sagot sa iyong mga tanong sa IDNStudy.com. Magtanong ng anumang bagay at makatanggap ng detalyadong sagot mula sa aming komunidad ng mga eksperto.

How to find unknown variables in a combination? For example : nC5 = 126 and 10Cr = 252.

Thanks.​


Sagot :

[tex] \large \mathcal{SOLUTION:} [/tex]

[tex] \small \begin{array}{l} \textsf{Recall the formula for combination: } \\ \\ \qquad \large {}^nC_r = \dfrac{n!}{r!\:(n - r)!} \\ \\ \\ a.)\: \bold{Given:}\: {}^nC_5 = 126 \\ \\ \dfrac{n!}{5!\: (n - 5)!} = 126 \\ \\ \textsf{Expand the numerator.} \\ \\ \dfrac{n(n - 1)(n - 2)(n - 3)(n - 4)\cancel{(n - 5)!}}{5!\: \cancel{(n - 5)!}} = 126 \\ \\ \textsf{Multiply both sides by }5! \\ \\ n(n - 1)(n - 2)(n - 3)(n - 4) = 5!(126) \\ \\ n(n - 1)(n - 2)(n - 3)(n - 4) = (5)(4)(3)(2)(1)(3)(6)(7) \\ \\ n(n - 1)(n - 2)(n - 3)(n - 4) = (9)(8)(7)(6)(5) \\ \\ n(n - 1)(n - 2)(n - 3)(n - 4) = (9)(9-1)(9-2)(9-3)(9-4) \\ \\ \therefore \boxed{n = 9} \\ \\ \: \end{array} [/tex]

[tex] \small \begin{array}{l} b.)\: \bold{Given:}\: {}^{10}C_r = 252 \\ \\ \begin{aligned} \dfrac{10!}{r! \: (10 - r)!} = 252 \implies \dfrac{10!}{252} &= r! (10 - r)! \\ \\ \dfrac{3628800}{252} &= r! (10 - r)! \\ \\ 1440 &= r!(10 - r)! \\ \\ (120)^2 &= r!(10 - r)! \\ \\ (10 - r)! &= r! = 120 \\ \\ \therefore &\:\:\boxed{r = 5} \end{aligned} \end{array} [/tex]