Tuhrwidn
Answered

Magtanong at makakuha ng maliwanag na mga sagot sa IDNStudy.com. Makakuha ng impormasyon mula sa aming mga eksperto, na nagbibigay ng detalyadong sagot sa lahat ng iyong mga tanong.

How to find unknown variables in a combination? For example : nC5 = 126 and 10Cr = 252.

Thanks.​


Sagot :

[tex] \large \mathcal{SOLUTION:} [/tex]

[tex] \small \begin{array}{l} \textsf{Recall the formula for combination: } \\ \\ \qquad \large {}^nC_r = \dfrac{n!}{r!\:(n - r)!} \\ \\ \\ a.)\: \bold{Given:}\: {}^nC_5 = 126 \\ \\ \dfrac{n!}{5!\: (n - 5)!} = 126 \\ \\ \textsf{Expand the numerator.} \\ \\ \dfrac{n(n - 1)(n - 2)(n - 3)(n - 4)\cancel{(n - 5)!}}{5!\: \cancel{(n - 5)!}} = 126 \\ \\ \textsf{Multiply both sides by }5! \\ \\ n(n - 1)(n - 2)(n - 3)(n - 4) = 5!(126) \\ \\ n(n - 1)(n - 2)(n - 3)(n - 4) = (5)(4)(3)(2)(1)(3)(6)(7) \\ \\ n(n - 1)(n - 2)(n - 3)(n - 4) = (9)(8)(7)(6)(5) \\ \\ n(n - 1)(n - 2)(n - 3)(n - 4) = (9)(9-1)(9-2)(9-3)(9-4) \\ \\ \therefore \boxed{n = 9} \\ \\ \: \end{array} [/tex]

[tex] \small \begin{array}{l} b.)\: \bold{Given:}\: {}^{10}C_r = 252 \\ \\ \begin{aligned} \dfrac{10!}{r! \: (10 - r)!} = 252 \implies \dfrac{10!}{252} &= r! (10 - r)! \\ \\ \dfrac{3628800}{252} &= r! (10 - r)! \\ \\ 1440 &= r!(10 - r)! \\ \\ (120)^2 &= r!(10 - r)! \\ \\ (10 - r)! &= r! = 120 \\ \\ \therefore &\:\:\boxed{r = 5} \end{aligned} \end{array} [/tex]