Magtanong at makakuha ng maaasahang mga sagot sa IDNStudy.com. Magtanong at makakuha ng detalyadong sagot mula sa aming komunidad ng mga eksperto.

What is the value of the derivative for the given value of t?
f(t) = (t^3−2t+1) (2t^2+3t) ; t = −3


Sagot :

[tex] \large \bold{SOLUTION:} [/tex]

[tex] \small \begin{array}{l} \bold{Given:}\: f(t) = (t^3−2t+1)(2t^2+3t) \\ \\ f'(t) = \dfrac{d}{dt}\Big[(t^3−2t+1)(2t^2+3t)\Big] \\ \\ \textsf{By Product Rule,} \\ \\ f'(t) = (3t^2 - 2)(2t^2 + 3t) + (t^3 - 2t + 1)(4t + 3) \\ \\ \textsf{At }t = -3, \\ \\ f'(-3) = (3(-3)^2 - 2)(2(-3)^2 + 3(-3)) + ((-3)^3 -2(-3) + 1)(4(-3) + 3) \\ \\ f'(-3) = \boxed{405} \\ \\ \: \end{array} [/tex]

[tex] \small \begin{array}{l} \textsf{Or we can expand the RHS of given equation then} \\ \textsf{take the derivative with respect to }x. \\ \\ f(t) = (t^3−2t+1)(2t^2+3t) \\ \\ f(t) = 2t^5 + 3t^4 - 4t^3 - 6t^2 + 2t^2 + 3t \\ \\ f(t) = 2t^5 + 3t^4 - 4t^3 - 4t^2 + 3t \\ \\ f'(t) = \dfrac{d}{dt}(2t^5 + 3t^4 - 4t^3 - 4t^2 + 3t) \\ \\ \textsf{By Chain Rule,} \\ \\ f'(t) = 10t^4 + 12t^3 - 12t^2 - 8t + 3 \\ \\ \textsf{At }t=-3, \\ \\ f'(-3) = 10(-3)^4 + 12(-3)^3 - 12(-3)^2 - 8(-3) + 3 \\ \\ f'(-3) = \boxed{405} \end{array} [/tex]