Kumonekta sa mga eksperto at makakuha ng mga sagot sa IDNStudy.com. Tuklasin ang mga maaasahang impormasyon sa anumang paksa sa pamamagitan ng aming network ng bihasang mga propesyonal.
Sagot :
Solution:
[tex]\sf \sum\limits_{x=0}^{\infty}\big(\frac{2^x(x^2+x-1)(x^2+x+1)}{e^2x!}\big)[/tex]
[tex]= \sf \sum\limits_{x=0}^{\infty}\big(\frac{e^{-2}2^x(x^2+x-1)(x^2+x+1)}{x!}\big)[/tex]
[tex]= \sf \sum\limits_{x=0}^{\infty}\big(\frac{e^{-2}2^x(x^4+2x^3+x^3-1)}{x!}\big)[/tex]
[tex]= \sf e^{-2} \sum\limits_{x=0}^{\infty}\big(\frac{2^x(x^4+2x^3+x^3-1)}{x!}\big)[/tex]
[tex]= \sf e^{-2} \big[\sum\limits_{x=0}^{\infty}\big(\frac{2^x(x^4)}{x!}\big) + \sum\limits_{x=0}^{\infty}\big(\frac{2^x(2x^3)}{x!}\big) + \sum\limits_{x=0}^{\infty}\big(\frac{2^x(x^2)}{x!}\big) - \sum\limits_{x=0}^{\infty}\big(\frac{2^x(1)}{x!}\big)\big][/tex]
[tex]= \sf (e^{-2})(94e^2 + 44e^2 + 6e^2-e^2)[/tex]
[tex]= \sf (e^{-2})(143e^{2})[/tex]
[tex]= \sf 143e^{0}[/tex]
[tex]= \large \boxed{\sf 143}[/tex]
??
[tex] \large \bold{SOLUTION:} [/tex]
[tex] \!\!\begin{array}{l} \small \textsf{Let } S = \displaystyle \sum_{x=0}^{\infty}\frac{2^x(x^2+x-1)(x^2+x+1)}{e^2x!} \\ \\ \small S =\displaystyle e^{-2} \sum_{x=0}^{\infty}\frac{2^x((x^2+x)^2 -1)}{x!} \\ \\ \small S = \displaystyle e^{-2} \sum_{x=0}^{\infty}\frac{2^x(x^4 +2x^3 + x^2 -1)}{x!} \\ \\ \small{S} = \displaystyle \footnotesize e^{-2}\! \left( \sum_{x=0}^{\infty}\frac{2^x x^4}{x!} + 2 \sum_{x=0}^{\infty}\frac{2^x x^3}{x!} + \sum_{x=0}^{\infty} \frac{2^x x^2}{x!} - \sum_{x=0}^{\infty} \frac{2^x}{x!}\right) \end{array} [/tex]
[tex]\!\! \small \begin{array}{l} \textsf{The above series can be evaluated by the Recurrence} \\ \textsf{Relation} \\ \\ \qquad \large \displaystyle \sum_{x=0}^{\infty} \frac{z^x x^k}{x!} = z \frac{d}{dz} \sum_{x=0}^{\infty} \frac{z^x x^{k-1}}{x!} \\ \\ \textsf{Starting from }k = 0, \\ \\ \bullet \displaystyle \sum_{x=0}^{\infty} \frac{z^x}{x!} = e^z \\ \\ \bullet \displaystyle \sum_{x=0}^{\infty} \frac{z^x x}{x!} = z\frac{d}{dz} e^z = ze^z \\ \\ \bullet \displaystyle \sum_{x=0}^{\infty} \frac{z^x x^2}{x!} = z\frac{d}{dz} ze^z = z(ze^z + e^z) = (z^2 + z)e^z \end{array} [/tex]
[tex]\!\!\small \begin{array}{l} \begin{aligned} \bullet \displaystyle \sum_{x=0}^{\infty}\frac{z^x x^3}{x!} &= z\frac{d}{dz} (z^2 + z)e^z \\ \\ &= z(z^2 + z + 2z + 1)e^z \\ \\ &= (z^3 + 3z^2 + z)e^z \end{aligned} \\ \\ \begin{aligned} \bullet \displaystyle \sum_{x=0}^{\infty}\frac{z^x x^4}{x!} &= z\frac{d}{dz}(z^3 + 3z^2 + z)e^z \\ \\ & = z(z^3 + 3z^2 + z + 3z^2 + 6z + 1)e^z \\ \\ &= (z^4 + 6z^3 + 7z^2 + z)e^z \end{aligned} \end{array} [/tex]
[tex] \small \begin{array}{l} \textsf{Evaluating at }z = 2, \\ \\ \bullet \displaystyle \sum_{x=0}^{\infty} \frac{2^x}{x!} = e^2 \\ \\ \bullet \displaystyle \sum_{x=0}^{\infty} \frac{2^x x^2}{x!} = (2^2 + 2)e^2 = 6e^2 \\ \\ \bullet \displaystyle \sum_{x=0}^{\infty}\frac{2^x x^3}{x!} = (2^3 + 3\cdot 2^2 + 2)e^2 = 22e^2 \\ \\ \bullet \displaystyle \sum_{x=0}^{\infty}\frac{2^x x^4}{x!} = (2^4 + 6\cdot 2^3 + 7\cdot 2^2 + 2)e^2 = 94e^2 \\ \\ \\ \implies S = e^{-2} e^{2} (94 + 2\cdot 22 + 6 - 1) \\ \\ \implies S = \boxed{143} \end{array} [/tex]
[tex] \mathfrak{\#Brainlèss\_Squad} [/tex]
Maraming salamat sa iyong pakikilahok. Patuloy na magbahagi ng iyong mga ideya at kasagutan. Ang iyong kaalaman ay mahalaga sa ating komunidad. Ang IDNStudy.com ay nangako na sasagutin ang lahat ng iyong mga tanong. Salamat at bisitahin kami palagi.