IDNStudy.com, ang iyong mapagkukunan para sa mabilis at maaasahang mga sagot. Alamin ang mga detalyadong sagot sa iyong mga tanong mula sa aming malawak na kaalaman sa mga eksperto.

If you choose 5 cards in a deck of diamonds with 12 cards, how many different combinations can be formed?​

Sagot :

COMBINATION

==============================

» Formula:

[tex] : \: \implies \sf \large C(n,r)= \Large \frac{n!}{r!(n-r)!} [/tex]

» Where (n) is the number of cards and (r) is the number of cards that can be picked.

[tex]\implies \sf \large C(12,5)= \Large \frac{12!}{5!(12 - 5)!} [/tex]

[tex]\implies \sf \large C(12,5)= \Large \frac{12 \times 11 \times 10 \times 9 \times 8 \times \cancel{ 7!}}{5!( \cancel{7!})} [/tex]

[tex]\implies \sf \large C(12,5)= \Large \frac{12 \times 11 \times 10 \times 9 \times 8}{5!} [/tex]

[tex]\implies \sf \large C(12,5)= \Large \frac{95040}{120} [/tex]

[tex]\implies \sf \large C(12,5)= 792 \\ \\ [/tex]

Final Answer:

[tex] \tt \huge » \: \purple{792 \: combinations}[/tex]

==============================

#CarryOnLearning

(ノ^_^)ノ