IDNStudy.com, ang komunidad ng pagbabahagi ng kaalaman at mga sagot. Anuman ang kahirapan ng iyong mga tanong, ang aming komunidad ay may mga sagot na kailangan mo.

If you choose 5 cards in a deck of diamonds with 12 cards, how many different combinations can be formed?​

Sagot :

COMBINATION

==============================

» Formula:

[tex] : \: \implies \sf \large C(n,r)= \Large \frac{n!}{r!(n-r)!} [/tex]

» Where (n) is the number of cards and (r) is the number of cards that can be picked.

[tex]\implies \sf \large C(12,5)= \Large \frac{12!}{5!(12 - 5)!} [/tex]

[tex]\implies \sf \large C(12,5)= \Large \frac{12 \times 11 \times 10 \times 9 \times 8 \times \cancel{ 7!}}{5!( \cancel{7!})} [/tex]

[tex]\implies \sf \large C(12,5)= \Large \frac{12 \times 11 \times 10 \times 9 \times 8}{5!} [/tex]

[tex]\implies \sf \large C(12,5)= \Large \frac{95040}{120} [/tex]

[tex]\implies \sf \large C(12,5)= 792 \\ \\ [/tex]

Final Answer:

[tex] \tt \huge » \: \purple{792 \: combinations}[/tex]

==============================

#CarryOnLearning

(ノ^_^)ノ