IDNStudy.com, kung saan ang iyong mga tanong ay may mabilis na sagot. Tuklasin ang malawak na hanay ng mga paksa at makahanap ng maaasahang sagot mula sa mga bihasang miyembro ng aming komunidad.
[tex] \Large \mathcal{SOLUTION:} [/tex]
[tex] \begin{array}{l} \textsf{By Principle of Inclusion and Exclusion,} \\ \\ \qquad\:\: P(E) = 1 - P(E') \\ \\ \begin{aligned} P(\textsf{atleast 1 black ball}) &= 1 - P(\textsf{No black ball}) \\ \\ P(\textsf{atleast 1 black ball}) &= 1 - \dfrac{{}^6C_3}{{}^9C_3} \\ \\ P(\textsf{atleast 1 black ball}) &= 1 - \dfrac{\frac{6!}{3! \: 3!}}{\frac{9!}{3! \: 6!}} \\ \\ P(\textsf{atleast 1 black ball}) &= 1 - \dfrac{\frac{6\cdot 5\cdot 4}{6}}{\frac{9\cdot 8\cdot 7}{6}} \\ \\ P(\textsf{atleast 1 black ball}) &= 1 - \dfrac{20}{84} \\ \\ P(\textsf{atleast 1 black ball}) &= \dfrac{84 - 20}{84} \\ \\ P(\textsf{atleast 1 black ball}) &= \dfrac{64}{84} \\ \\ P(\textsf{atleast 1 black ball}) &= \boxed{\frac{16}{21}} \end{aligned} \end{array} [/tex]