IDNStudy.com, kung saan ang iyong mga tanong ay may mabilis na sagot. Tuklasin ang malawak na hanay ng mga paksa at makahanap ng maaasahang sagot mula sa mga bihasang miyembro ng aming komunidad.

6. A bag contains 2 white balls, 3 black balls and 4 red balls. In how
many ways can 3 balls be drawn from the bag, if at least one black
ball is to be included in the draw?​


Sagot :

[tex] \Large \mathcal{SOLUTION:} [/tex]

[tex] \begin{array}{l} \textsf{By Principle of Inclusion and Exclusion,} \\ \\ \qquad\:\: P(E) = 1 - P(E') \\ \\ \begin{aligned} P(\textsf{atleast 1 black ball}) &= 1 - P(\textsf{No black ball}) \\ \\ P(\textsf{atleast 1 black ball}) &= 1 - \dfrac{{}^6C_3}{{}^9C_3} \\ \\ P(\textsf{atleast 1 black ball}) &= 1 - \dfrac{\frac{6!}{3! \: 3!}}{\frac{9!}{3! \: 6!}} \\ \\ P(\textsf{atleast 1 black ball}) &= 1 - \dfrac{\frac{6\cdot 5\cdot 4}{6}}{\frac{9\cdot 8\cdot 7}{6}} \\ \\ P(\textsf{atleast 1 black ball}) &= 1 - \dfrac{20}{84} \\ \\ P(\textsf{atleast 1 black ball}) &= \dfrac{84 - 20}{84} \\ \\ P(\textsf{atleast 1 black ball}) &= \dfrac{64}{84} \\ \\ P(\textsf{atleast 1 black ball}) &= \boxed{\frac{16}{21}} \end{aligned} \end{array} [/tex]