Magtanong at makakuha ng maaasahang mga sagot sa IDNStudy.com. Magtanong ng anumang bagay at makatanggap ng mga maalam na sagot mula sa aming komunidad ng mga propesyonal.

Find the ninth term if the a sub 1 is 10 and the common diff. Is negative ½. With solution thanks guys.

Sagot :

Okay, I am assuming that [tex] a_{1} [/tex] is equal to [tex] t_{1} [/tex]

Formula:
               [tex] a_{n} = a_{1} + (n -1) d[/tex]
Substitute:
                n for 9
               [tex] a_{1} [/tex] for 10
                d for [tex] -\frac{1}{2} [/tex]
Solution:
               [tex] a_{9} [/tex] = 10 + ( 9 -1)[tex]- \frac{1}{2} [/tex]
                 [tex] a_{9} [/tex] = 10 + 8 ([tex]- \frac{1}{2} [/tex])
                 [tex] a_{9} [/tex] = 10 + -4
                  [tex] a_{9} [/tex] = 10 - 4
                   [tex] a_{9} [/tex] = 6
Check:
  First 9 terms:           10, 9.5, 9, 8.5, 8, 7.5, 7, 6.5, 6

Answer:
               The 9th term is 6.

[tex]a_n=a_1+(n-1)d \\ a_9=10+(8)(-1/2)=10-4=6[/tex]