Suriin ang IDNStudy.com para sa mabilis at maaasahang mga solusyon. Tuklasin ang malalim na sagot sa iyong mga tanong mula sa aming komunidad ng mga bihasang propesyonal.
Sagot :
I am not sure if there is a shorter way in solving this one, but I can show you a solution only that it is a bit longer though.
Overview:
24 3
Formula:
[tex] t_{n} = t_{1} + (n-1) d [/tex]
We will focus first in: 24 3
To find d:
Substitute:
[tex] t_{n} [/tex] for 3
[tex] t_{1} [/tex] for 24
n for 4
3 = 24 + ( 4 -1 )d
3 = 24 + 3d
3 - 24 = 3d
-21 = 3d
- 21 / 3 = 3d /3
-7 = d
We already have d = -7, we will go back to the original one.
24 3
[tex] t_{n} = t_{1} + (n-1) d [/tex]
Substitute:
3 = [tex] t_{1} [/tex] + (5 - 1) -7
3 = [tex] t_{1} [/tex] + -28
3 = [tex] t_{1} [/tex] - 28
3 + 28 = [tex] t_{1} [/tex]
31 = [tex] t_{1} [/tex]
So, the common difference (d) is -7, while the first term ([tex] t_{1} [/tex]) is 31
Overview:
24 3
Formula:
[tex] t_{n} = t_{1} + (n-1) d [/tex]
We will focus first in: 24 3
To find d:
Substitute:
[tex] t_{n} [/tex] for 3
[tex] t_{1} [/tex] for 24
n for 4
3 = 24 + ( 4 -1 )d
3 = 24 + 3d
3 - 24 = 3d
-21 = 3d
- 21 / 3 = 3d /3
-7 = d
We already have d = -7, we will go back to the original one.
24 3
[tex] t_{n} = t_{1} + (n-1) d [/tex]
Substitute:
3 = [tex] t_{1} [/tex] + (5 - 1) -7
3 = [tex] t_{1} [/tex] + -28
3 = [tex] t_{1} [/tex] - 28
3 + 28 = [tex] t_{1} [/tex]
31 = [tex] t_{1} [/tex]
So, the common difference (d) is -7, while the first term ([tex] t_{1} [/tex]) is 31
[tex]a_5-a_2=(5-2)d \\ 3-24=3d \\ -21=3d \\ -7=d[/tex]
We now have the common difference so:
[tex]a_n=a_1+(n-1)d \\ a_2=a_1+d \\ 24=a_1-7 \\ 31=a_1[/tex]
We now have the common difference so:
[tex]a_n=a_1+(n-1)d \\ a_2=a_1+d \\ 24=a_1-7 \\ 31=a_1[/tex]
Pinahahalagahan namin ang bawat tanong at sagot na iyong ibinabahagi. Huwag kalimutang bumalik at magtanong ng mga bagong bagay. Ang iyong kaalaman ay mahalaga sa ating komunidad. Bumalik ka sa IDNStudy.com para sa maasahang mga sagot sa iyong mga katanungan. Salamat sa iyong tiwala.