IDNStudy.com, ang iyong mapagkukunan para sa mga sagot ng eksperto at komunidad. Sumali sa aming interactive na platform ng tanong at sagot para sa mabilis at eksaktong tugon mula sa mga propesyonal sa iba't ibang larangan.
Sagot :
The formula is:
[tex]n= \frac{a_n-a_1}{d} +1= \frac{59-3}{4} +1= \frac{56}{4} +1=14+1=15[/tex]
So there are 15 terms.
[tex]n= \frac{a_n-a_1}{d} +1= \frac{59-3}{4} +1= \frac{56}{4} +1=14+1=15[/tex]
So there are 15 terms.
Formula:
[tex] t_{n} = t_{1} + (n-1)d[/tex]
59 = [tex] t_{n} [/tex] - the nth term or could be the last term
3 = [tex] t_{1} [/tex] - the first term
4 = d - the common difference
? = n - the number of terms, the one we are solving for
(Substitute)
[tex] t_{n} = t_{1} + (n-1)d[/tex]
59 = 3 + (n -1) 4
59 = 3 + 4n - 4
59 = 4n -1
59 + 1 = 4n
60 = 4n
60 / 4 = 4n /4
15 = n
So, n = 15.
There are 15 terms in the sequence.
[tex] t_{n} = t_{1} + (n-1)d[/tex]
59 = [tex] t_{n} [/tex] - the nth term or could be the last term
3 = [tex] t_{1} [/tex] - the first term
4 = d - the common difference
? = n - the number of terms, the one we are solving for
(Substitute)
[tex] t_{n} = t_{1} + (n-1)d[/tex]
59 = 3 + (n -1) 4
59 = 3 + 4n - 4
59 = 4n -1
59 + 1 = 4n
60 = 4n
60 / 4 = 4n /4
15 = n
So, n = 15.
There are 15 terms in the sequence.
Maraming salamat sa iyong aktibong pakikilahok. Patuloy na magbahagi ng impormasyon at kasagutan. Sama-sama tayong lumikha ng isang masiglang komunidad ng pagkatuto. Salamat sa pagpili sa IDNStudy.com. Umaasa kami na makita ka ulit para sa mas maraming solusyon.