IDNStudy.com, ang platform na nag-uugnay ng mga tanong sa mga solusyon. Ang aming platform ay nagbibigay ng mga maaasahang sagot upang matulungan kang gumawa ng matalinong desisyon nang mabilis at madali.

How many terms are there in arithmetic sequence with a common difference of 4 and with first and last terms 3 and 59, respectively?

Sagot :

The formula is:
[tex]n= \frac{a_n-a_1}{d} +1= \frac{59-3}{4} +1= \frac{56}{4} +1=14+1=15[/tex]

So there are 15 terms.
Formula:
               [tex] t_{n} = t_{1} + (n-1)d[/tex]

59 = [tex] t_{n} [/tex] - the nth term or could be the last term 
 3 = [tex] t_{1} [/tex] - the first term      
 4 = d - the common difference
 ? = n - the number of terms, the one we are solving for
(Substitute)

 [tex] t_{n} = t_{1} + (n-1)d[/tex]

59 = 3 + (n -1) 4
59 = 3 + 4n - 4
59 = 4n -1
59 + 1 = 4n
60 = 4n
60 / 4 = 4n /4
15 = n

So, n = 15.

There are 15 terms in the sequence.