IDNStudy.com, ang iyong mapagkukunan para sa maaasahan at pangkomunidad na mga sagot. Sumali sa aming platform upang makatanggap ng mabilis at eksaktong tugon mula sa mga propesyonal sa iba't ibang larangan.

How many terms are there in arithmetic sequence with a common difference of 4 and with first and last terms 3 and 59, respectively?

Sagot :

The formula is:
[tex]n= \frac{a_n-a_1}{d} +1= \frac{59-3}{4} +1= \frac{56}{4} +1=14+1=15[/tex]

So there are 15 terms.
Formula:
               [tex] t_{n} = t_{1} + (n-1)d[/tex]

59 = [tex] t_{n} [/tex] - the nth term or could be the last term 
 3 = [tex] t_{1} [/tex] - the first term      
 4 = d - the common difference
 ? = n - the number of terms, the one we are solving for
(Substitute)

 [tex] t_{n} = t_{1} + (n-1)d[/tex]

59 = 3 + (n -1) 4
59 = 3 + 4n - 4
59 = 4n -1
59 + 1 = 4n
60 = 4n
60 / 4 = 4n /4
15 = n

So, n = 15.

There are 15 terms in the sequence.