Jhaycidn
Answered

Magtanong at makakuha ng maliwanag na mga sagot sa IDNStudy.com. Makakuha ng impormasyon mula sa aming mga eksperto, na nagbibigay ng maaasahang sagot sa lahat ng iyong mga tanong.

x^2-5x+10=0 . is it a quadratic or not?explain?

Sagot :

Yes,it's a quadratic ecuation because it has the general form of a second grade ecuation which is:

[tex]ax^2+bx+c[/tex]

We have the unknown therm raised at the second power x^2 = ax^2   => a=1
So,we would solve the quadratic ecuation:

[tex]x^2-5x+10=0 \\\\ a=1 \\ b=-5 \\ c=10 \\\\ \Delta= b^2-4ac= (-5)^2-4*1*10= 25-40\to \boxed{-15} \ \textless \ 0 \\ \Delta \ \textless \ 0 \\ a\ \textgreater \ 0 \\\\ -\frac{b}{2a}\to \frac{5}{2} \\\\ -\frac{\Delta}{4a}\to\frac{15}{4}[/tex]


We do the sign table
      x       |-                   [tex]\frac{5}{2}}[/tex]                   +   
x²-5x+10|+∞      ↓          [tex]\frac{15}{4}[/tex]        ↑        +∞

[tex]S=(-\infty; \frac{5}{2}] \ \cup \ [\frac{5}{2};\infty)[/tex]