IDNStudy.com, ang iyong gabay para sa maaasahan at mabilis na mga sagot. Makakuha ng impormasyon mula sa aming mga eksperto, na nagbibigay ng detalyadong sagot sa lahat ng iyong mga tanong.

The radius of circle A is 10 cm. If the measure of arc CT is 60 cm, what is the area of
sector CAT?​


Sagot :

Answer:

300 cm²

Step-by-step explanation:

Since we don't know the measure of the central angle of sector CAT, we'll solve for it first.

We know that the formula in finding the arc length is

[tex]\sf Arc \: length = \frac{\theta}{360^{\circ}} 2\pi r[/tex]

Given,

  • [tex]\sf Arc \: length = 60[/tex]
  • [tex]\sf r = 10[/tex]

Substituting,

[tex]\sf 60 = \frac{\theta}{360^{\circ}} 2\pi \times 10[/tex]

[tex]\implies \sf 60 = \frac{\theta}{360^{\circ}} 20\pi[/tex]

[tex]\implies \sf \frac{60(360^{\circ})}{20\pi} = \theta[/tex]

[tex]\implies \sf \frac{3(360^{\circ})}{\pi} = \theta[/tex]

[tex]\implies \sf \frac{1080^{\circ}}{\pi}= \theta[/tex]

We already solved the central angle of arc CT/sector CAT, which means that we can now solve for the area of sector CAT.

The formula in calculating the area of a sector is

[tex]\sf Area \: of \: sector = \frac{\theta}{360^{\circ}} \pi r^2[/tex]

Substituting,

[tex]\sf Area \: of \: sector =\frac{\frac{1080^{\circ}}{\pi} }{360^{\circ}}\pi \times 10^2[/tex]

[tex]\implies \sf Area \: of \: sector = \frac{1080^{\circ}}{\pi} \times \frac{1}{360^{\circ}} \times 100\pi[/tex]

[tex]\implies \sf Area \: of \: sector = \frac{1080^{\circ}\times 100\pi}{360^{\circ}\pi}[/tex]

[tex]\implies \sf Area \: of \: sector = \frac{300\pi}{\pi}[/tex]

[tex]\implies \boxed{\boxed{\sf Area \: of \: sector= 300}}[/tex]

Therefore, the area of sector CAT is 300 cm²

#CarryOnLearning