Answered

IDNStudy.com, kung saan ang iyong mga tanong ay may mabilis na sagot. Magtanong ng anumang bagay at makatanggap ng kumpleto at eksaktong sagot mula sa aming komunidad ng mga propesyonal.

Instruction: express each logarith in terms of log₂ M and log₂ N
[tex]1.) \: log2 \: {m}^{6} n[/tex]
[tex]2.) \: log2 \: \sqrt{mn} [/tex]
[tex]3.) \: log2 \frac{ \sqrt{mn} }{ {n}^{3} } [/tex]
[tex]4.) \: log2 ( \frac{m} {n})^{4} [/tex]





Sagot :

LOGARTIHMS

1. log₂ m⁶n

If logₙ (xy), then logₙ (xy) = logₙ (x) + logₙ (y)

log₂ (m⁶) + log₂ (n)

If logₙ (x), then logₙ (xᵃ) = alogₙ (x)

log₂ (m⁶) + log₂ (n) = 6log₂ (m) + log₂ (n)

2. log₂ √mn

If logₙ (xy), then logₙ (xy) = logₙ (x) + logₙ (y)

log₂ √m + log₂ √n

Any value in a radical symbol assuming that the root is 2 have always the exponent of ½. So x = x¹/²

log₂ (m¹/²) + log₂ (n¹/²)

If logₙ (xᵃ), then logₙ (xᵃ) = alogₙ (x)

log₂ m¹/² + log₂ n¹/² = ½log₂ (m) + ½log₂ (n)

3. log₂ √mn / n³

If logₙ (x/y), then logₙ (x/y) = logₙ (x) - logₙ (y)

log₂ (√mn) - log₂ (n³)

Any value in a radical symbol assuming that the root is 2 have always the exponent of ½. So √x = x¹/²

log₂ (m¹/²) + log₂ (n¹/²) - log₂ (n³)

If logₙ (xᵃ), then logₙ (xᵃ) = alogₙ (x)

log₂ (m¹/²) + log₂ (n¹/²) - log₂ (n³) = ⅓log₂ (m) + ½log₂ (n) - 3log₂ (n)

4. log₂ (m/n)⁴

If log (x/y) then log (x/y)ᵃ = log (xᵃ/yᵃ)

log₂ (m⁴/n⁴)

If logₙ (x/y), then logₙ (x/y) = logₙ (x) - logₙ (y)

log₂ (m⁴) - log₂ (n⁴)

If logₙ (xᵃ), then logₙ (xᵃ) = alogₙ (x)

log₂ (m⁴) - log₂ (n⁴) = 4log₂ (m) - 4log₂ (n)

[tex] \: [/tex]

#CarryOnLearning