Answered

IDNStudy.com, ang iyong destinasyon para sa mabilis at eksaktong mga sagot. Makakuha ng impormasyon mula sa aming mga eksperto, na nagbibigay ng maaasahang sagot sa lahat ng iyong mga tanong.

Instruction: express each logarith in terms of log₂ M and log₂ N
[tex]1.) \: log2 \: {m}^{6} n[/tex]
[tex]2.) \: log2 \: \sqrt{mn} [/tex]
[tex]3.) \: log2 \frac{ \sqrt{mn} }{ {n}^{3} } [/tex]
[tex]4.) \: log2 ( \frac{m} {n})^{4} [/tex]





Sagot :

LOGARTIHMS

1. log₂ m⁶n

If logₙ (xy), then logₙ (xy) = logₙ (x) + logₙ (y)

log₂ (m⁶) + log₂ (n)

If logₙ (x), then logₙ (xᵃ) = alogₙ (x)

log₂ (m⁶) + log₂ (n) = 6log₂ (m) + log₂ (n)

2. log₂ √mn

If logₙ (xy), then logₙ (xy) = logₙ (x) + logₙ (y)

log₂ √m + log₂ √n

Any value in a radical symbol assuming that the root is 2 have always the exponent of ½. So x = x¹/²

log₂ (m¹/²) + log₂ (n¹/²)

If logₙ (xᵃ), then logₙ (xᵃ) = alogₙ (x)

log₂ m¹/² + log₂ n¹/² = ½log₂ (m) + ½log₂ (n)

3. log₂ √mn / n³

If logₙ (x/y), then logₙ (x/y) = logₙ (x) - logₙ (y)

log₂ (√mn) - log₂ (n³)

Any value in a radical symbol assuming that the root is 2 have always the exponent of ½. So √x = x¹/²

log₂ (m¹/²) + log₂ (n¹/²) - log₂ (n³)

If logₙ (xᵃ), then logₙ (xᵃ) = alogₙ (x)

log₂ (m¹/²) + log₂ (n¹/²) - log₂ (n³) = ⅓log₂ (m) + ½log₂ (n) - 3log₂ (n)

4. log₂ (m/n)⁴

If log (x/y) then log (x/y)ᵃ = log (xᵃ/yᵃ)

log₂ (m⁴/n⁴)

If logₙ (x/y), then logₙ (x/y) = logₙ (x) - logₙ (y)

log₂ (m⁴) - log₂ (n⁴)

If logₙ (xᵃ), then logₙ (xᵃ) = alogₙ (x)

log₂ (m⁴) - log₂ (n⁴) = 4log₂ (m) - 4log₂ (n)

[tex] \: [/tex]

#CarryOnLearning