IDNStudy.com, ang iyong destinasyon para sa mabilis at eksaktong mga sagot. Makakuha ng impormasyon mula sa aming mga eksperto, na nagbibigay ng detalyadong sagot sa lahat ng iyong mga tanong.

John hits the ball at 3 ft above the ground with an initial velocity of 32 ft/sec.The path of the ball is given by the function S (t) = 16t² +32 +3 .where t is the time in seconds and S is the height.what is the maximum height reached the ball ?
paki answer Naman po
step by step solution ..​


Sagot :

Answer:

Maximum height of the ball will reached to a height of 19 units at t=1.

Step-by-step explanation:

A question where a typo error at S (t) = 16t² +32 +3,

Correcting the typo error

S (t) = 16t² +32t +3,

The maximum height reached the ball will occur at

t = -b/(2a)

Where

S(t) = at^2 + bt + c.

Thefore

a = 16

b = 32

Solving

t = -b/(2a)

t = -32/2(16)

t = -1

There is no negative time therefore the question has a typo error again

Solving further by substituting t = -1 to the function S(t)

S (t) = 16t² +32t +3,

S (-1) = 16(-1)² +32(-1) +3,

S (-1)  = 16-32+3

S (-1) = -13

This is a further indication that the question has a typo error since there is no negative height

Correcting the typo error S (t) = 16t² +32t +3

S (t) = -16t² +32t +3

a = -16

b = 32

Substituting the values of a and b to t = -b/(2a)

t = -b/(2a)

t = -32/(2)(-16)

t = 1

Substitute the value of t to the function S(t)

S (t) = -16t² +32t +3

S(1) = -16(1)² + 32(1) + 3

S(1) = -16+32+3

S(1) = 19

Therefore the maximum height of the ball will reached to a height of 19 units at t=1.

#BrainliestBunch

Maraming salamat sa iyong aktibong pakikilahok. Magpatuloy sa pagtatanong at pagbahagi ng iyong mga ideya. Sama-sama tayong lumikha ng isang mas matibay at produktibong komunidad ng kaalaman. Para sa mga de-kalidad na sagot, piliin ang IDNStudy.com. Salamat at bumalik ka ulit sa aming site.