IDNStudy.com, ang iyong mapagkukunan para sa malinaw at maaasahang mga sagot. Hanapin ang mga solusyong kailangan mo nang mabilis at madali sa tulong ng aming mga eksperto.

pa help nmn po salamat po​ , ​

Pa Help Nmn Po Salamat Po class=

Sagot :

Answer:

16. 19 degrees

17. 152 degrees

18. 103 degrees

19-20. 108 degrees

21-23. 140 degrees

24-25. 30 degrees

Step-by-step explanation:

B.

16.

[tex]\sf 88^{\circ} + 73 ^{\circ} + a = 180^{\circ}[/tex]

[tex]\implies \sf 161^{\circ}+a = 180^{\circ}[/tex]

[tex]\implies \sf a = 180^{\circ}-161^{\circ}[/tex]

[tex]\implies \boxed{\boxed{\sf a = 19^{\circ}}}[/tex]

17.

[tex]\sf 87^{\circ} + 104^{\circ} +107^{\circ}+90^{\circ}+b=540^{\circ}[/tex]

[tex]\implies \sf 388^{\circ}+b=540^{\circ}[/tex]

[tex]\implies \sf b = 540^{\circ} - 388^{\circ}[/tex]

[tex]\implies \boxed{\boxed{\sf b = 152^{\circ}}}[/tex]

18.  

[tex]\sf 113^{\circ}+2(72^{\circ})+c=360^{\circ}[/tex]

[tex]\implies \sf 113^{\circ} + 144^{\circ} +c = 360^{\circ}[/tex]

[tex]\implies \sf 257^{\circ}+c=360^{\circ}[/tex]

[tex]\implies \sf c = 360^{\circ} - 257^{\circ}[/tex]

[tex]\implies \boxed{\boxed{\sf c = 103^{\circ}}}[/tex]

19-20.

Solving for d:

Let a, b, c, and f be the other 4 interior angles of the pentagon.

[tex]\sf a + b + c + d + f = 540^{\circ}[/tex]

From the given image, the angles of the pentagon are equal.

Hence,

[tex]\sf a = b = c = d = f[/tex]

Substituting,

[tex]\sf d + d + d +d + d = 540^{\circ}[/tex]

[tex]\implies \sf 5d = 540^{\circ}[/tex]

[tex]\implies \sf d = \frac{540^{\circ}}{5}[/tex]

[tex]\implies \boxed{\boxed{\sf d = 108^{\circ}}}[/tex]

Solving for e:

Let e' be such that e' and e are supplementary angles.

[tex]\sf e' +e = 180^{\circ}[/tex]

Observe that [tex]\sf e' = d[/tex]

We know that [tex]\sf d = 108^{\circ}[/tex]

Thus

[tex]\sf 108^{\circ}+e = 180^{\circ}\\\implies \sf e = 180^{\circ}-108^{\circ}\\\implies \boxed{\boxed{\sf e = 72^{\circ}}}[/tex]

C.

21-23.

The formula in finding the  sum of the interior angles of a polygon is

[tex]\sf s = (n-2)180^{\circ}[/tex]

The formula in finding the sum of the interior angles of a polygon can also be written as

[tex]\sf \angle 1 + \angle 2 + ... +\angle n = (n-2)180^{\circ}[/tex]

We know that a nonagon has 9 sides.  

[tex]\sf \angle 1 + \angle 2 +... + \angle 9 = (9-2)180^{\circ}[/tex]

Since the nonagon is a regular nonagon, its interior angles are equal.

This implies,

[tex]\sf \angle 1 = \angle 2 = ... = \angle 9[/tex]

Hence,

[tex]\sf \angle 1 + \angle 1 + \angle 1 + \angle 1 + \angle 1 + \angle 1 + \angle 1 + \angle 1 + \angle 1=(9-2)180^{\circ}\\\implies \sf 9\angle 1 = (7)180^{\circ}\\\implies \sf 9\angle 1 = 1260^{\circ}\\\implies \sf \angle 1= \frac{1260^{\circ}}{9}\\\implies \sf \angle 1 = 140^{\circ}[/tex]

Hence, the measure of each interior angle of a regular nonagon is 140°.

24-25.

The other form of the formula sum of the interior angles of a polygon is

[tex]\sf \angle 1 + \angle 2 + ... +\angle n = (n-2)180^{\circ}[/tex], (as we've shown to 21-23)

We know that a regular dodecagon has 12 sides.

[tex]\sf \angle 1 + \angle 2 + ... + \angle 12 = (12-2)180^{\circ}[/tex]

Also, a regular dodecagon has equal interior angles.

Hence,

[tex]\sf \angle 1 = \angle 2 = ... = \angle 12[/tex]

Substituting and adding yields,

[tex]\sf 12\angle 1 = (12-2)180^{\circ}\\\implies \sf 12 \angle 1 = (10)180^{\circ}\\\implies \sf 12\angle 1 = 1800^{\circ}\\\implies \sf \angle 1 = \frac{1800^{\circ}}{12}\\\implies \sf \angle 1 = 150^{\circ}[/tex]

Therefore the measure of each interior angles of a regular dodecagon is 150°

Now, we know that interior angles and exterior angles of a polygon are supplementary angles

We also know that the measure of each interior angle of a regular dodecagon is 150°.

Hence,

[tex]\sf 150^{\circ} + Exterior \ Angle = 180^{\circ}[/tex]

[tex]\implies \sf Exterior \ Angle = 180^{\circ} - 150^{\circ}[/tex]

[tex]\implies \boxed{\boxed{\sf Exterior \ Angle = 30^{\circ}}}[/tex]

#CarryOnLearning