IDNStudy.com, kung saan ang iyong mga tanong ay natutugunan ng mga eksperto. Sumali sa aming platform upang makatanggap ng mabilis at eksaktong tugon mula sa mga propesyonal sa iba't ibang larangan.
Answer:
Equation of the circle: [tex]x^2 + y^2 +4x -8y +2 = 0[/tex]
Step-by-step explanation:
Given:
[tex]r = 3\sqrt{2} \\C(-2, 4)[/tex]
Find:
Equation of the Circle= ?
Solution:
Standard form of Circle:
[tex](x-h)^{2} + (y-k)^{2} = r^{2}[/tex]
The General form of Circle:
[tex]x^2 + y^2 + Dx + Ey + F = 0[/tex]
where D, E and F are constants.
since we are given the points (or coordinates of the circle):
C(h, k) = C(-2, 4)
We can substitute the values of h, k and the radius in the standard form:
[tex][x-(-2)]^{2} + [y- (4)]^{2} = (3\sqrt{2} )^2\\(x+2)^{2} + (y-4)^{2} = 18\\(x^{2} +2x + 2x +4) +(y^2 -4y - 4y +16) = 18\\(x^2 +4x+4) + (y^2 -8y + 16)=18\\[/tex]
Combine like terms:
[tex]x^2 + y^2+4x -8y + 4+16-18 = 0\\\\x^2 +y^2 +4x-8y +2 = 0[/tex]← (This is the equation of the circle)