Suriin ang malawak na saklaw ng mga paksa at makakuha ng mga sagot sa IDNStudy.com. Magtanong ng anumang bagay at makatanggap ng detalyadong sagot mula sa aming komunidad ng mga eksperto.
Sagot :
Distance Formula:
[tex] \sqrt{(x - x_{2})^{2} + ( y - y_{2})^{2} } [/tex]
Substitute the variables:
x = -4
[tex] x_{2} [/tex] = 1
y = 2
[tex] y_{2} [/tex] = -11
[tex] \sqrt{( -4 - 1 )^{2} + ( 2 - -11)^{2} } [/tex]
[tex] \sqrt{( -5)^{2} + ( 13)^{2} } [/tex]
[tex]\sqrt{( 25) + ( 169) } [/tex]
[tex] \sqrt{194} [/tex]
That is the answer if I am not mistaken.
[tex] \sqrt{(x - x_{2})^{2} + ( y - y_{2})^{2} } [/tex]
Substitute the variables:
x = -4
[tex] x_{2} [/tex] = 1
y = 2
[tex] y_{2} [/tex] = -11
[tex] \sqrt{( -4 - 1 )^{2} + ( 2 - -11)^{2} } [/tex]
[tex] \sqrt{( -5)^{2} + ( 13)^{2} } [/tex]
[tex]\sqrt{( 25) + ( 169) } [/tex]
[tex] \sqrt{194} [/tex]
That is the answer if I am not mistaken.
The distance formula is
d=[tex] \sqrt{(x_2-x_1)^2+(y_2-y_1)^2} [/tex]
Lets set (1,-11) as x2 and y2
d=[tex] \sqrt{(1+4)^2+(-11-2)^2} [/tex]
d=[tex] \sqrt{5^2+(-13)^2} [/tex]
d=[tex] \sqrt{25+169} [/tex]
d=[tex] \sqrt{194}[/tex]
d=13.93 units
Hope this helps =)
d=[tex] \sqrt{(x_2-x_1)^2+(y_2-y_1)^2} [/tex]
Lets set (1,-11) as x2 and y2
d=[tex] \sqrt{(1+4)^2+(-11-2)^2} [/tex]
d=[tex] \sqrt{5^2+(-13)^2} [/tex]
d=[tex] \sqrt{25+169} [/tex]
d=[tex] \sqrt{194}[/tex]
d=13.93 units
Hope this helps =)
Ang iyong aktibong pakikilahok ay mahalaga sa amin. Magpatuloy sa pagtatanong at pagbahagi ng iyong nalalaman. Sama-sama tayong lumikha ng isang mas matibay na samahan. Ang IDNStudy.com ay laging nandito upang tumulong sa iyo. Bumalik ka palagi para sa mga sagot sa iyong mga katanungan.