IDNStudy.com, kung saan ang iyong mga tanong ay may mabilis na sagot. Tuklasin ang malawak na hanay ng mga paksa at makahanap ng maaasahang sagot mula sa mga bihasang miyembro ng aming komunidad.
Sagot :
For us to determine the distance between two points on the Cartesian plane we need to use the Pythagorean Theorem which is:
[tex]a^2+b^2=c^2[/tex]
We let the coordinates as follows:
For point A: [tex](x_a,y_a)=(-3,0)[/tex]
For point B: [tex](x_b,y_b)=(7,1)[/tex]
The Pythagorean Theorem would be:
[tex](x_a-y_a)^2+(x_b-y_b)^2=c^2[/tex]
We substitute the values:
[tex]c^2=(-3-7)^2+(0-1)^2 =(-10)^2+(-1)^2 =100+1 =101[/tex]
The value of c is the square root of 101 which is either [tex] \sqrt{101} [/tex] or [tex]- \sqrt{101} [/tex] but since the distance between two points can never be negative then the distance between A and B is [tex] \sqrt{101} [/tex]
[tex]a^2+b^2=c^2[/tex]
We let the coordinates as follows:
For point A: [tex](x_a,y_a)=(-3,0)[/tex]
For point B: [tex](x_b,y_b)=(7,1)[/tex]
The Pythagorean Theorem would be:
[tex](x_a-y_a)^2+(x_b-y_b)^2=c^2[/tex]
We substitute the values:
[tex]c^2=(-3-7)^2+(0-1)^2 =(-10)^2+(-1)^2 =100+1 =101[/tex]
The value of c is the square root of 101 which is either [tex] \sqrt{101} [/tex] or [tex]- \sqrt{101} [/tex] but since the distance between two points can never be negative then the distance between A and B is [tex] \sqrt{101} [/tex]
Pinahahalagahan namin ang bawat ambag mo. Patuloy na magbahagi ng impormasyon at karanasan. Sama-sama tayong magtutulungan upang makamit ang ating mga layunin. Ang IDNStudy.com ay nangako na sasagutin ang lahat ng iyong mga tanong. Salamat at bisitahin kami palagi.