Sumali sa IDNStudy.com at tuklasin ang komunidad ng mga taong handang tumulong. Makakuha ng mga sagot sa iyong mga tanong mula sa aming mga eksperto, handang magbigay ng mabilis at tiyak na solusyon.

Find the distance between each pair of points: (-1, 3) and (5, -5)

Sagot :

We need to form a right triangle so we could use the Pythagorean Theorem.

The Pythagorean Theorem states that:
[tex]a^2+b^2=c^2[/tex]

The Pythagorean Theorem applies to right triangles only. a and b are the side lengths of the legs while c is the length of the hypotenuse.

In a Cartesian plane the side lengths a and b are represented like this:
[tex](x_a-y_a)=a \\ (x_b-yb)=b[/tex]

So the Pythagorean Theorem would be:
[tex](x_a-y_a)^2+(x_b-y_b)^2=c^2[/tex]

We have [tex](x_a,y_a)[/tex] as (-1,3)
and [tex](x_b,y_b)[/tex] as (5, -1)

We substitute the values to the Pythagorean theorem:
[tex]c^2=(-1-5)^2+(3-(-1))^2 \\ =(-6)^2+4^2 \\ =36+16 \\ 50[/tex]

[tex]c^2=50 \\ c= \sqrt{50} =5 \sqrt{2} [/tex]

Therefore the distance between points is [tex]5 \sqrt{2} [/tex]