IDNStudy.com, ang perpektong platform para sa eksaktong at mabilis na mga sagot. Ang aming komunidad ay handang magbigay ng malalim at praktikal na mga solusyon sa lahat ng iyong mga katanungan.

Find the distance between each pair of points: (-1, 3) and (5, -5)

Sagot :

We need to form a right triangle so we could use the Pythagorean Theorem.

The Pythagorean Theorem states that:
[tex]a^2+b^2=c^2[/tex]

The Pythagorean Theorem applies to right triangles only. a and b are the side lengths of the legs while c is the length of the hypotenuse.

In a Cartesian plane the side lengths a and b are represented like this:
[tex](x_a-y_a)=a \\ (x_b-yb)=b[/tex]

So the Pythagorean Theorem would be:
[tex](x_a-y_a)^2+(x_b-y_b)^2=c^2[/tex]

We have [tex](x_a,y_a)[/tex] as (-1,3)
and [tex](x_b,y_b)[/tex] as (5, -1)

We substitute the values to the Pythagorean theorem:
[tex]c^2=(-1-5)^2+(3-(-1))^2 \\ =(-6)^2+4^2 \\ =36+16 \\ 50[/tex]

[tex]c^2=50 \\ c= \sqrt{50} =5 \sqrt{2} [/tex]

Therefore the distance between points is [tex]5 \sqrt{2} [/tex]