IDNStudy.com, kung saan ang mga eksperto at komunidad ay nagtutulungan para sagutin ang iyong mga tanong. Makakuha ng hakbang-hakbang na mga gabay para sa lahat ng iyong teknikal na tanong mula sa mga miyembro ng aming komunidad na may kaalaman.

What is the length of the line segment determined by A(-2, 3) and B(4, 1)?


Sagot :

To find the distance of two points we need to use the Pythagorean Theorem the distance between points is a hypotenuse of a right triangle.

The Pythagorean Theorem states that:
[tex]a^2+b^2=c^2[/tex]

The Pythagorean Theorem triangles with 90° (right triangles) a and b are the side lengths of the legs while c is the length of the hypotenuse.

In a Cartesian plane the side lengths a and b are represented like this:
[tex](x_a-y_a)=a \\ (x_b-yb)=b[/tex]

So the Pythagorean Theorem would be:
[tex](x_a-y_a)^2+(x_b-y_b)^2=c^2[/tex]

We have [tex](x_a,y_a)[/tex] as the coordinates of point A which is [tex](-2,3)[/tex]
and [tex](x_b,y_b)[/tex] as the coordinates of point B which is [tex](4,1)[/tex]

We substitute the values to the Pythagorean theorem:
[tex]c^2=(-2-4)^2+(3-1)^2 \\ =(-6)^2+(2)^2 \\ =36+4 \\ =40[/tex]

[tex]c= \sqrt{40} =2 \sqrt{10} [/tex]

Therefore the length of the line segment is [tex]2 \sqrt{10} [/tex]