IDNStudy.com, kung saan ang iyong mga tanong ay may mabilis na sagot. Ang aming platform ay nagbibigay ng mga maaasahang sagot upang matulungan kang gumawa ng matalinong desisyon nang mabilis at madali.

What is the length of the line segment determined by A(-2, 3) and B(4, 1)?


Sagot :

To find the distance of two points we need to use the Pythagorean Theorem the distance between points is a hypotenuse of a right triangle.

The Pythagorean Theorem states that:
[tex]a^2+b^2=c^2[/tex]

The Pythagorean Theorem triangles with 90° (right triangles) a and b are the side lengths of the legs while c is the length of the hypotenuse.

In a Cartesian plane the side lengths a and b are represented like this:
[tex](x_a-y_a)=a \\ (x_b-yb)=b[/tex]

So the Pythagorean Theorem would be:
[tex](x_a-y_a)^2+(x_b-y_b)^2=c^2[/tex]

We have [tex](x_a,y_a)[/tex] as the coordinates of point A which is [tex](-2,3)[/tex]
and [tex](x_b,y_b)[/tex] as the coordinates of point B which is [tex](4,1)[/tex]

We substitute the values to the Pythagorean theorem:
[tex]c^2=(-2-4)^2+(3-1)^2 \\ =(-6)^2+(2)^2 \\ =36+4 \\ =40[/tex]

[tex]c= \sqrt{40} =2 \sqrt{10} [/tex]

Therefore the length of the line segment is [tex]2 \sqrt{10} [/tex]