Makahanap ng mabilis at maaasahang mga solusyon sa iyong mga problema sa IDNStudy.com. Sumali sa aming interactive na platform ng tanong at sagot para sa mabilis at eksaktong tugon mula sa mga propesyonal sa iba't ibang larangan.

Find the length of the line segment determined by the given pair of points. P(2,-2) and Q(-1,2)

Sagot :

Please check the picture to understand the solution better.

The Pythagorean Theorem which applies to right triangles states that:
[tex]a^2+b^2=c^2[/tex]
a and b are the lengths of the legs while c is the length of the hypotenuse.

In the Cartesian plane they are:
[tex]x_a-x_b=a[/tex]
[tex]y_a-y_b=b[/tex]

The points are have coordinates [tex](x,y)[/tex]

This means
 [tex](x_a,y_a)[/tex] are the coordinates of the first point 
and [tex](x_b,y_b)[/tex] are the coordinates of the second

So in the problem:
[tex](x_a,y_a)=(2,-2)[/tex] which are the coordinates of P
[tex](x_b,y_b)=(-1,2)[/tex] which are the coordinates of P

We substitute this to the Pythagorean theorem
[tex](2-(-1))^2+(-2-2)^2=c^2[/tex]
[tex]3^2+(-4)^2=c^2[/tex]
[tex]9+16=c^2 \\ 25=c^2 \\ 5=c[/tex]

The triangle that will be formed has a very common Pythagorean triple which is (3,4,5).

The length of the hypotenuse (or any length of a side) cannot be less than or equal to 0 so it cannot be -5.

Therefore the length of the line segment when you connect the two points is 5.

View image Mlcparra16