Makahanap ng eksaktong solusyon sa iyong mga problema sa IDNStudy.com. Anuman ang kahirapan ng iyong mga tanong, ang aming komunidad ay may mga sagot na kailangan mo.

The sum of the four terms in arithmetic progression is 18 and the sum of their squares is 326. find the number?


Sagot :

An arithmetic progression is a sequence in which they have a common difference. A sequence is shown as:
[tex]a_1,a_2,a_3,...,a_n[/tex]
[tex]a_2-a_1=a_3-a_2=...=a_n-a_n_-_1=d [/tex]
in which d is the common difference

So we know that:
Let us make[tex]a_1=m, a_2=n, a_3=o, a_4=p[/tex]
[tex]m+n+o+p=18[/tex]
[tex]m^2+n^2+o^2+p^2=326[/tex]

Remember that this is an arithmetic progression so the terms are respectively 
[tex]m, m+d, m+2d, m+3d[/tex] or
[tex]n-d, n, n+d, n+2d[/tex]
Since d is their common difference

[tex](n-d)+n+(n+d)+(n+2d)=4n+2d=18 \\ n= \frac{9-d}{2} [/tex]

We plug in the values to the second equation in the given
[tex] (\frac{9-3d}{2}) ^2+ (\frac{9-d}{2}) ^2+ (\frac{9+d}{2}) ^2+ (\frac{9+3d}{2}) ^2=326[/tex]
[tex]\frac{2(9^2+(3d)^2)+2(9^2+d^2)}{4} =326 \\ \frac{2*9^2+9d^2+d^2}{2} =326 \\ 81+5d^2=326 \\ 5d^2=245 \\ d^2=49 \\ d=+7 , -7[/tex]

The squareroot of 49 is either positive or negative 7.

So remember that
[tex]n= \frac{9-d}{2} [/tex]

If d=7
[tex]n= \frac{9-7}{2} =1[/tex]
When n=1
m=1-7=-6
n=1
o=1+7=8
p=8+7=15

If d=-7
[tex]n= \frac{9-(-7)}{2} = \frac{16}{2} =8[/tex]
When n=8
m=8-(-7)=15
n=8
o=8-7=1
p=1-7=-6

Therefore the numbers are -6, 1, 8 and 15