Makahanap ng mabilis na mga solusyon sa iyong mga problema sa IDNStudy.com. Ang aming platform ay nagbibigay ng mga maaasahang sagot upang matulungan kang gumawa ng matalinong desisyon nang mabilis at madali.

Find the complete solution of xdy+(x^3+xy^2-y)dx=0

Sagot :

Hi there! I am not so sure if this is the right answer but I will show it:

First we factor out [tex]xd[/tex] from the equation and get:
[tex]xd(y+ x^{3} +x y^{2} -y)=0 \\ xd(x^3+xy^2)=0 \\ x^{2} d(x^2+y^2)=0[/tex]

So our 1st case is that [tex]x^2d=0[/tex]
Case 1.1 [tex]x^2=0 \\ x=0[/tex]
Case 1.2 [tex]d=0[/tex]

Then our second case would be [tex] x^{2} +y^2=0[/tex]
[tex]x^2=-y^2[/tex]

Remember that all square numbers are greater than or equal to zero therefore [tex]y^2[/tex] cannot be negative and cannot be positive because that would make [tex] x^{2} [/tex] negative so [tex]y^2=0[/tex] therefore:
[tex]x^2=-y^2 \\ x=y=0[/tex]

So our solution set:
x={0}
y={0}
d={0}