Makahanap ng eksaktong solusyon sa iyong mga problema sa IDNStudy.com. Ang aming komunidad ay handang magbigay ng malalim at praktikal na mga solusyon sa lahat ng iyong mga katanungan.

Find the complete solution of xdy+(x^3+xy^2-y)dx=0

Sagot :

Hi there! I am not so sure if this is the right answer but I will show it:

First we factor out [tex]xd[/tex] from the equation and get:
[tex]xd(y+ x^{3} +x y^{2} -y)=0 \\ xd(x^3+xy^2)=0 \\ x^{2} d(x^2+y^2)=0[/tex]

So our 1st case is that [tex]x^2d=0[/tex]
Case 1.1 [tex]x^2=0 \\ x=0[/tex]
Case 1.2 [tex]d=0[/tex]

Then our second case would be [tex] x^{2} +y^2=0[/tex]
[tex]x^2=-y^2[/tex]

Remember that all square numbers are greater than or equal to zero therefore [tex]y^2[/tex] cannot be negative and cannot be positive because that would make [tex] x^{2} [/tex] negative so [tex]y^2=0[/tex] therefore:
[tex]x^2=-y^2 \\ x=y=0[/tex]

So our solution set:
x={0}
y={0}
d={0}