Makakuha ng maliwanag na mga sagot sa iyong mga tanong sa IDNStudy.com. Makakuha ng impormasyon mula sa aming mga eksperto, na nagbibigay ng detalyadong sagot sa lahat ng iyong mga tanong.
Sagot :
[tex]Fencing\ problems\ are\ what\ we\ can\ conclude\ in\ a\ \\ real\ life\ perimeters\ problems. \\ \\ In\ order\ to\ solve\ this,\ let's\ get\ first\ the\ formula \\ of\ the\ perimeter\ of\ the\ rectangle. \\ \\ ^{Formula:} \\ _{Perimeter}=2(l)+2(w) \\ \\ ^{Given:} \\ _{length}=9 \frac{5}{6}\ yards \\ \\ _{width}=5 \frac{1}{4}\ yards [/tex]
[tex]\bold{Equation:} \\ \\ Perimeter=2(l)+2(w) \\ \\ Perimeter=2(\ 9\frac{5}{6}\ yards )+2(\ 5\frac{1}{4}\ yards) \\ \\ Solve\ first\ the\ total\ length\ or\ \underline{TL} \\ \\ TL=2(\ 9 \frac{5}{6}\ yards) \\ \\ TL= \frac{2}{1}\cdot\ 9 \frac{5}{6}\ yards \\ \\ TL= \frac{2}{1}\ \cdot\ [ \frac{54+5}{6}\ yards= \frac{59}{6}\ yards] \\ \\ TL= \frac{^{1}\not{2}}{1}\ \cdot\ \frac{59}{\not6_{3}}\to \frac{59}{3} \\ \\ \boxed{\bold{TL=\ 19 \frac{2}{3}\ yards}} [/tex]
[tex]Solving\ for\ total\ width\ or\ \underline{TW} \\ \\ TW=2\ (5\ \frac{1}{4}\ yards) \\ \\ TW= \frac{2}{1}\ \cdot \ 5\ \frac{1}{4}\ yards \\ \\ TW= \frac{2}{1}\ \cdot\ \ [ \frac{20+1}{4}\ yards= \frac{21}{4}\ yards] \\ \\ TW= \frac{^{1}\not2}{1}\ \cdot\ \frac{21}{\not4_{2}}\to \frac{21}{2}\ yards \\ \\ \boxed{\bold{TW=10 \frac{1}{2}\ yards}} [/tex]
[tex]Final\ solution: \\ Perimeter=2(l)+2(w) \\ \\ Perimeter=19 \frac{2}{3}\ yards+\ 10 \frac{1}{2}\ yards \\ \\ Perimeter= \frac{59}{3}\ yards\ +\ \frac{21}{2}\ yards\ \ \ \ \ |\ ^{Change\ the\ following\ fractions\ to} \\ . \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ |\ \ ^{improper\ fractions.} \\ \\ Get\ their\ common\ denominator: \\ \\ \frac{19}{3}\ yards \to\ \frac{118}{6}\ yards \\ \\ \frac{21}{2}\ yards \to\ \frac{63}{6}\ yards [/tex]
[tex]Perimeter= \frac{118}{6}\ yards +\ \frac{63}{6}\ yards \\ \\ Perimeter= \frac{181}{6}\ yards \\ \\ \boxed{\boxed{\bold{Perimeter=\ 30\ \frac{1}{6}\ yards}}} \\ \\ \\ \\ Hope\ it\ Helps :) \\ Domini [/tex]
[tex]\bold{Equation:} \\ \\ Perimeter=2(l)+2(w) \\ \\ Perimeter=2(\ 9\frac{5}{6}\ yards )+2(\ 5\frac{1}{4}\ yards) \\ \\ Solve\ first\ the\ total\ length\ or\ \underline{TL} \\ \\ TL=2(\ 9 \frac{5}{6}\ yards) \\ \\ TL= \frac{2}{1}\cdot\ 9 \frac{5}{6}\ yards \\ \\ TL= \frac{2}{1}\ \cdot\ [ \frac{54+5}{6}\ yards= \frac{59}{6}\ yards] \\ \\ TL= \frac{^{1}\not{2}}{1}\ \cdot\ \frac{59}{\not6_{3}}\to \frac{59}{3} \\ \\ \boxed{\bold{TL=\ 19 \frac{2}{3}\ yards}} [/tex]
[tex]Solving\ for\ total\ width\ or\ \underline{TW} \\ \\ TW=2\ (5\ \frac{1}{4}\ yards) \\ \\ TW= \frac{2}{1}\ \cdot \ 5\ \frac{1}{4}\ yards \\ \\ TW= \frac{2}{1}\ \cdot\ \ [ \frac{20+1}{4}\ yards= \frac{21}{4}\ yards] \\ \\ TW= \frac{^{1}\not2}{1}\ \cdot\ \frac{21}{\not4_{2}}\to \frac{21}{2}\ yards \\ \\ \boxed{\bold{TW=10 \frac{1}{2}\ yards}} [/tex]
[tex]Final\ solution: \\ Perimeter=2(l)+2(w) \\ \\ Perimeter=19 \frac{2}{3}\ yards+\ 10 \frac{1}{2}\ yards \\ \\ Perimeter= \frac{59}{3}\ yards\ +\ \frac{21}{2}\ yards\ \ \ \ \ |\ ^{Change\ the\ following\ fractions\ to} \\ . \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ |\ \ ^{improper\ fractions.} \\ \\ Get\ their\ common\ denominator: \\ \\ \frac{19}{3}\ yards \to\ \frac{118}{6}\ yards \\ \\ \frac{21}{2}\ yards \to\ \frac{63}{6}\ yards [/tex]
[tex]Perimeter= \frac{118}{6}\ yards +\ \frac{63}{6}\ yards \\ \\ Perimeter= \frac{181}{6}\ yards \\ \\ \boxed{\boxed{\bold{Perimeter=\ 30\ \frac{1}{6}\ yards}}} \\ \\ \\ \\ Hope\ it\ Helps :) \\ Domini [/tex]
Natutuwa kami na ikaw ay bahagi ng aming komunidad. Magpatuloy sa pagtatanong at pagbibigay ng mga sagot. Sama-sama tayong magtutulungan upang makamit ang mas mataas na antas ng karunungan. Para sa mabilis at maasahang mga sagot, bisitahin ang IDNStudy.com. Nandito kami upang tumulong sa iyo.