Suriin ang IDNStudy.com at makakuha ng mga sagot sa iyong mga tanong sa iba't ibang paksa. Tuklasin ang mga kumpletong sagot sa iyong mga tanong mula sa aming komunidad ng mga eksperto.
Sagot :
[tex]Fencing\ problems\ are\ what\ we\ can\ conclude\ in\ a\ \\ real\ life\ perimeters\ problems. \\ \\ In\ order\ to\ solve\ this,\ let's\ get\ first\ the\ formula \\ of\ the\ perimeter\ of\ the\ rectangle. \\ \\ ^{Formula:} \\ _{Perimeter}=2(l)+2(w) \\ \\ ^{Given:} \\ _{length}=9 \frac{5}{6}\ yards \\ \\ _{width}=5 \frac{1}{4}\ yards [/tex]
[tex]\bold{Equation:} \\ \\ Perimeter=2(l)+2(w) \\ \\ Perimeter=2(\ 9\frac{5}{6}\ yards )+2(\ 5\frac{1}{4}\ yards) \\ \\ Solve\ first\ the\ total\ length\ or\ \underline{TL} \\ \\ TL=2(\ 9 \frac{5}{6}\ yards) \\ \\ TL= \frac{2}{1}\cdot\ 9 \frac{5}{6}\ yards \\ \\ TL= \frac{2}{1}\ \cdot\ [ \frac{54+5}{6}\ yards= \frac{59}{6}\ yards] \\ \\ TL= \frac{^{1}\not{2}}{1}\ \cdot\ \frac{59}{\not6_{3}}\to \frac{59}{3} \\ \\ \boxed{\bold{TL=\ 19 \frac{2}{3}\ yards}} [/tex]
[tex]Solving\ for\ total\ width\ or\ \underline{TW} \\ \\ TW=2\ (5\ \frac{1}{4}\ yards) \\ \\ TW= \frac{2}{1}\ \cdot \ 5\ \frac{1}{4}\ yards \\ \\ TW= \frac{2}{1}\ \cdot\ \ [ \frac{20+1}{4}\ yards= \frac{21}{4}\ yards] \\ \\ TW= \frac{^{1}\not2}{1}\ \cdot\ \frac{21}{\not4_{2}}\to \frac{21}{2}\ yards \\ \\ \boxed{\bold{TW=10 \frac{1}{2}\ yards}} [/tex]
[tex]Final\ solution: \\ Perimeter=2(l)+2(w) \\ \\ Perimeter=19 \frac{2}{3}\ yards+\ 10 \frac{1}{2}\ yards \\ \\ Perimeter= \frac{59}{3}\ yards\ +\ \frac{21}{2}\ yards\ \ \ \ \ |\ ^{Change\ the\ following\ fractions\ to} \\ . \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ |\ \ ^{improper\ fractions.} \\ \\ Get\ their\ common\ denominator: \\ \\ \frac{19}{3}\ yards \to\ \frac{118}{6}\ yards \\ \\ \frac{21}{2}\ yards \to\ \frac{63}{6}\ yards [/tex]
[tex]Perimeter= \frac{118}{6}\ yards +\ \frac{63}{6}\ yards \\ \\ Perimeter= \frac{181}{6}\ yards \\ \\ \boxed{\boxed{\bold{Perimeter=\ 30\ \frac{1}{6}\ yards}}} \\ \\ \\ \\ Hope\ it\ Helps :) \\ Domini [/tex]
[tex]\bold{Equation:} \\ \\ Perimeter=2(l)+2(w) \\ \\ Perimeter=2(\ 9\frac{5}{6}\ yards )+2(\ 5\frac{1}{4}\ yards) \\ \\ Solve\ first\ the\ total\ length\ or\ \underline{TL} \\ \\ TL=2(\ 9 \frac{5}{6}\ yards) \\ \\ TL= \frac{2}{1}\cdot\ 9 \frac{5}{6}\ yards \\ \\ TL= \frac{2}{1}\ \cdot\ [ \frac{54+5}{6}\ yards= \frac{59}{6}\ yards] \\ \\ TL= \frac{^{1}\not{2}}{1}\ \cdot\ \frac{59}{\not6_{3}}\to \frac{59}{3} \\ \\ \boxed{\bold{TL=\ 19 \frac{2}{3}\ yards}} [/tex]
[tex]Solving\ for\ total\ width\ or\ \underline{TW} \\ \\ TW=2\ (5\ \frac{1}{4}\ yards) \\ \\ TW= \frac{2}{1}\ \cdot \ 5\ \frac{1}{4}\ yards \\ \\ TW= \frac{2}{1}\ \cdot\ \ [ \frac{20+1}{4}\ yards= \frac{21}{4}\ yards] \\ \\ TW= \frac{^{1}\not2}{1}\ \cdot\ \frac{21}{\not4_{2}}\to \frac{21}{2}\ yards \\ \\ \boxed{\bold{TW=10 \frac{1}{2}\ yards}} [/tex]
[tex]Final\ solution: \\ Perimeter=2(l)+2(w) \\ \\ Perimeter=19 \frac{2}{3}\ yards+\ 10 \frac{1}{2}\ yards \\ \\ Perimeter= \frac{59}{3}\ yards\ +\ \frac{21}{2}\ yards\ \ \ \ \ |\ ^{Change\ the\ following\ fractions\ to} \\ . \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ |\ \ ^{improper\ fractions.} \\ \\ Get\ their\ common\ denominator: \\ \\ \frac{19}{3}\ yards \to\ \frac{118}{6}\ yards \\ \\ \frac{21}{2}\ yards \to\ \frac{63}{6}\ yards [/tex]
[tex]Perimeter= \frac{118}{6}\ yards +\ \frac{63}{6}\ yards \\ \\ Perimeter= \frac{181}{6}\ yards \\ \\ \boxed{\boxed{\bold{Perimeter=\ 30\ \frac{1}{6}\ yards}}} \\ \\ \\ \\ Hope\ it\ Helps :) \\ Domini [/tex]
Natutuwa kami na ikaw ay bahagi ng aming komunidad. Huwag kalimutang bumalik upang magtanong at magbahagi ng iyong karanasan. Sama-sama tayong magpapaunlad ng kaalaman para sa lahat. May mga katanungan ka? Ang IDNStudy.com ang may sagot. Bisitahin kami palagi para sa pinakabagong impormasyon.