IDNStudy.com, ang iyong mapagkukunan para sa malinaw at maaasahang mga sagot. Tuklasin ang malawak na hanay ng mga paksa at makahanap ng maaasahang sagot mula sa mga bihasang miyembro ng aming komunidad.

find the number of diagonals of a regular polygon whose interior angle measures 144

Sagot :

Given:
              Interior angle of a polygon - [tex] 144^{o}

Find:
          Number of diagonals the polygon have

Solution:
               (Let us settle with the degrees later.)
      Interior angle =   [tex] \frac{180 (n-2)}{n) [/tex]
         144 = [tex] \frac{180 (n-2)}{n} [/tex]
         144n = 180 n - 360
        144n - 180n = 180n - 180n - 360
        [tex] \frac{-36n = -360}{-36} [/tex]
              n = 10

n = 10, that means that the polygon is a 10-sided polygon or DECAGON.
The remaining problem is its number of diagonals.
 
Number of diagonals = [tex] \frac{n(n-3)}{2} [/tex]
                                  = [tex] \frac{ 10(10 - 3)}{2} [/tex]
                                  = [tex] \frac{10 (7)}{2} [/tex]
                                  = [tex] \frac{70}{2} [/tex]
                                  = 35

Answer:

                The regular polygon that has an interior angle of 144 degrees has 35 diagonals.