IDNStudy.com, ang iyong mapagkukunan para sa malinaw at maaasahang mga sagot. Tuklasin ang malawak na hanay ng mga paksa at makahanap ng maaasahang sagot mula sa mga bihasang miyembro ng aming komunidad.
Sagot :
Given:
Interior angle of a polygon - [tex] 144^{o}
Find:
Number of diagonals the polygon have
Solution:
(Let us settle with the degrees later.)
Interior angle = [tex] \frac{180 (n-2)}{n) [/tex]
144 = [tex] \frac{180 (n-2)}{n} [/tex]
144n = 180 n - 360
144n - 180n = 180n - 180n - 360
[tex] \frac{-36n = -360}{-36} [/tex]
n = 10
n = 10, that means that the polygon is a 10-sided polygon or DECAGON.
The remaining problem is its number of diagonals.
Number of diagonals = [tex] \frac{n(n-3)}{2} [/tex]
= [tex] \frac{ 10(10 - 3)}{2} [/tex]
= [tex] \frac{10 (7)}{2} [/tex]
= [tex] \frac{70}{2} [/tex]
= 35
Answer:
The regular polygon that has an interior angle of 144 degrees has 35 diagonals.
Interior angle of a polygon - [tex] 144^{o}
Find:
Number of diagonals the polygon have
Solution:
(Let us settle with the degrees later.)
Interior angle = [tex] \frac{180 (n-2)}{n) [/tex]
144 = [tex] \frac{180 (n-2)}{n} [/tex]
144n = 180 n - 360
144n - 180n = 180n - 180n - 360
[tex] \frac{-36n = -360}{-36} [/tex]
n = 10
n = 10, that means that the polygon is a 10-sided polygon or DECAGON.
The remaining problem is its number of diagonals.
Number of diagonals = [tex] \frac{n(n-3)}{2} [/tex]
= [tex] \frac{ 10(10 - 3)}{2} [/tex]
= [tex] \frac{10 (7)}{2} [/tex]
= [tex] \frac{70}{2} [/tex]
= 35
Answer:
The regular polygon that has an interior angle of 144 degrees has 35 diagonals.
Ang iyong kontribusyon ay napakahalaga sa amin. Magpatuloy sa pagtatanong at pagbibigay ng mga sagot. Sama-sama tayong magtatagumpay sa ating layunin. Salamat sa pagbisita sa IDNStudy.com. Nandito kami upang magbigay ng malinaw at tumpak na mga sagot.