Sumali sa IDNStudy.com at makakuha ng mabilis at maaasahang mga sagot. Magtanong ng anumang bagay at makatanggap ng agarang tugon mula sa aming dedikadong komunidad ng mga eksperto.

Prove the following identities : cot (theta) cos (theta) = csc (theta) - sin (theta)
(tan - sin) + (1 - cos) = ( 1 - sec )


Sagot :

cotθcosθ = cscθ - sinθ
(cosθ/sinθ)cosθ = cscθ - sinθ
[(cosθ)^2]/sinθ = cscθ - sinθ
[1-(sinθ)^2]/sinθ = cscθ - sinθ
1/sinθ - sinθ = cscθ - sinθ
cscθ - sinθ = cscθ - sinθ





let x=theta(I don't have the theta symbol)

cotxcosx=cscx-sinx
since cot is [tex]\frac{cosx}{sinx}[/tex]
[tex]\frac{cosx}{sinx}(cosx)=cscx-sinx[/tex]
[tex]\frac{cos^2x}{sinx}=cscx-sinx[/tex]
since cos²x=1-sin²x
Substitute
[tex]\frac{1-sin^2x}{sinx}=cscx-sinx[/tex]
Separate the 1-sin²x
[tex]\frac{1}{sinx}-\frac{sin^2x}{sinx}=cscx-sinx[/tex]
[tex]\frac{1}{sinx}=cscx;[/tex]
cscx-sinx=cscx-sinx

Hope this helps =)