Sumali sa komunidad ng IDNStudy.com at simulang makuha ang mga sagot. Magtanong ng anumang bagay at makatanggap ng kumpleto at eksaktong sagot mula sa aming komunidad ng mga propesyonal.

Prove the following identities : cot (theta) cos (theta) = csc (theta) - sin (theta)
(tan - sin) + (1 - cos) = ( 1 - sec )


Sagot :

cotθcosθ = cscθ - sinθ
(cosθ/sinθ)cosθ = cscθ - sinθ
[(cosθ)^2]/sinθ = cscθ - sinθ
[1-(sinθ)^2]/sinθ = cscθ - sinθ
1/sinθ - sinθ = cscθ - sinθ
cscθ - sinθ = cscθ - sinθ





let x=theta(I don't have the theta symbol)

cotxcosx=cscx-sinx
since cot is [tex]\frac{cosx}{sinx}[/tex]
[tex]\frac{cosx}{sinx}(cosx)=cscx-sinx[/tex]
[tex]\frac{cos^2x}{sinx}=cscx-sinx[/tex]
since cos²x=1-sin²x
Substitute
[tex]\frac{1-sin^2x}{sinx}=cscx-sinx[/tex]
Separate the 1-sin²x
[tex]\frac{1}{sinx}-\frac{sin^2x}{sinx}=cscx-sinx[/tex]
[tex]\frac{1}{sinx}=cscx;[/tex]
cscx-sinx=cscx-sinx

Hope this helps =)