IDNStudy.com, ang iyong mapagkukunan para sa mga sagot ng eksperto at komunidad. Ang aming komunidad ay handang magbigay ng malalim at praktikal na mga solusyon sa lahat ng iyong mga katanungan.

pasagotttt pleaseeeee ​

Pasagotttt Pleaseeeee class=

Sagot :

[tex] \large\mathcal{ANSWER:} [/tex] 

[tex] \boxed{\begin{array}{l} 1.)\:\textsf{Php 3,130.91} \\ \\ 2.)\:\textsf{Php 1,471,669.01} \end{array}} [/tex]

[tex] \large\mathcal{SOLUTION:} [/tex] 

[tex] \begin{array}{l} \large \textsf{Compound Interest Formula} \\ \\ \quad \quad \displaystyle A = P\left(1 + \dfrac{r}{n}\right)^{nt} \\ \textsf{where:} \\ \begin{aligned} \quad A &= \textsf{final amount or future value} \\ P&= \textsf{principal/original amount} \\ r&=\textsf{interest rate} \\ n&=\textsf{compoundings per period} \\ t&=\textsf{number of periods} \end{aligned} \end{array} [/tex]

[tex] \begin{array}{l} 1.)\: \textsf{After 5 years,} \\ \quad \quad \begin{aligned} \displaystyle A &= 150,000\left(1 + \dfrac{0.03}{12}\right)^{12(5)} \\ A&=\textsf{Php 174,242.52} \end{aligned} \\ \\ \textsf{Josiah accumulated Php 174,242.52 after 5} \\ \textsf{years. Then another 5 years of fixed monthly} \\ \textsf{withdrawals until no money is left.} \end{array} [/tex]

[tex] \begin{array}{l} \textsf{Using the formula for Compound Interest with} \\ \quad \quad \quad \quad \textsf{Fixed Withdrawals,} \\ \\ \footnotesize \displaystyle \quad A = P\negthickspace\left(1 + \dfrac{r}{n}\right)^{nt} - W\negthickspace\left(\dfrac{n}{r}\right)\negthickspace\left[\left(1 + \dfrac{r}{n}\right)^{nt} - 1\right] \\ \textsf{where:} \\ \quad W = \textsf{fixed withdrawal amount} \end{array} [/tex]

[tex] \begin{array}{l} \textsf{Now, solve for}\: W\:\textsf{with}\:\textsf{Php 174,242.52}\:\textsf{as the} \\ \textsf{initial amount and 0 as the final amount.} \\ \\ \quad \footnotesize \displaystyle \ 0 = 174,242.52\left(1 + \dfrac{0.03}{12}\right)^{12(5)} \\ \quad \quad \quad \quad \quad \footnotesize - W\left(\dfrac{12}{0.03}\right)\negthickspace\left[\left(1 + \dfrac{0.03}{12}\right)^{12(5)} - 1\right] \\ \\ \begin{aligned} \quad \quad \: \: \quad 64.6467W &= 202,403.0353 \\ \implies W &= \boxed{\textsf{Php 3,130.91}} \end{aligned} \\ \\ \textsf{Thus, Josiah's monthly withdrawals should be}\\\textsf{Php 3,130.91}. \end{array} [/tex]

[tex] \begin{array}{l} 2.)\:\textsf{Solving for the original amount}\:P\:\textsf{using the}\\ \quad \textsf{same formula for Compound Interest with} \\ \quad \textsf{Fixed Withdrawals,} \\ \\ \footnotesize \displaystyle \quad 0 = P\negthickspace\left(1 +\dfrac{0.12}{12}\right)^{12(25)} \\ \footnotesize \quad \quad \quad \quad - 15,500\left(\dfrac{12}{0.12}\right)\negthickspace\left[\left(1 + \dfrac{0.12}{12}\right)^{12(25)} - 1\right] \\ \\ \begin{aligned} 15,500(1,878.8466) &= 19.78847P \\ \implies P &= \boxed{\textsf{Php 1,471,669.01}} \end{aligned}\\ \\ \textsf{Therefore, the original cost of the house and} \\ \textsf{lot is approximately equal to Php 1,471,669.01.} \end{array} [/tex]

[tex] \texttt \color{cyan} {\#CarryOnLearning} [/tex]

View image EngrJohann