Magtanong at makakuha ng maliwanag na mga sagot sa IDNStudy.com. Sumali sa aming interactive na platform ng tanong at sagot para sa mabilis at eksaktong tugon mula sa mga propesyonal sa iba't ibang larangan.

EVALUATION:
Direction: Answer the following question. Show your solution.
1.Given that y varies directly as x and y = 56 when x=7, find the constant of variation.
2.If y varies directly as x and y=6 when x = 4, find y when x = 10
3. y varies inversely as x and y = 50 when x=4, find y when x = 40.
4.w varies directly as the square of x and inversely as y and z. If w= 12 when x = 4, y = 2 and z=20, find w when x =
3, y = 8 and z= 5.
5.z varies jointly as x and y. If z = 3 when x = 3 and y = 15, find z when x = 6 and y = 9.
ce
line​


Sagot :

Answer:

[tex]1. \: y = kx \\ 56 = k \times 7 \\ \frac{56}{7} = k \\ k = 8 \: (constant \: of \: variation)[/tex]

[tex]2. \: y = kx \\ 6 = k \times 4 \\ \frac{6}{4} = k \\ k = \frac{3}{2} (constant \: of \: variation)[/tex]

hi[tex]y = kx \: \: - > \: \: y = \frac{3}{2} x \\ when \: x = 10 \\ y = \frac{3}{2} \times 10 = 15 \\ y = 15[/tex]

[tex]3. \: y = \frac{k}{x} \\ 50 = \frac{k}{4} \\ 50 \times 4 = k \\ k = 200 \: (constant \: of \: variation)[/tex]

[tex]y = \frac{k}{x} = \frac{200}{x} \\ when \: x = 40 \\ y = \frac{200}{40} = 5 \\ y = 5[/tex]

[tex]4. \: w = \frac{k {x}^{2} }{yz} \\ 12 = \frac{k \times {4}^{2} }{2 \times 20} \\ 12 = \frac{16k}{40} \\ \frac{12 \times 40}{16} = k \\ k = 30 \: (constant \: of \: variation)[/tex]

[tex]w = \frac{k {x}^{2} }{y} \: \: - > \: \: w = \frac{200 {x}^{2} }{yz} \\ when \: x = 3 \: y = 8 \: z = 5 \\ w = \frac{200 \times {3}^{2} }{8 \times 5} = \frac{200 \times 9}{40} = 45 \\ w = 45[/tex]

[tex]5. \: z =k xy \\ 3 = k \times 3 \times 15 \\ \frac{3}{3 \times 15} = k \\ k = \frac{1}{15} (constant \: of \: variation)[/tex]

[tex]z = kxy \: \: - > \: \: z = \frac{1}{15} xy \\ when \: x = 6 \: \: y = 9 \\ z = \frac{1}{15} \times 6 \times 9 = \frac{54}{15} = \frac{18}{5} = 3 \frac{3}{5} \\ z = 3 \frac{3}{5}[/tex]