IDNStudy.com, ang perpektong platform para magtanong at makakuha ng maaasahang mga sagot. Sumali sa aming platform ng tanong at sagot upang makakuha ng eksaktong tugon sa lahat ng iyong mahahalagang tanong.

Solve the following:
If y varies directly with the square of x and inversely with z, and y =1 when x=2 and z=10. Find y when x=4 and z=5.​


Sagot :

Answer:

8

Step-by-step explanation:

y = kx²/z

1 = k2²/10

1 = k4/10

10 = k4

k = 10/4

y = 10/4(4)²/5

y = 8

Answer:

The value of y is 8.

Step-by-step explanation:

Mathematical Equation:

[tex]\LARGE\text{$y=\frac{kx^2}{z}$}[/tex]

For the constant of variation (k):

Given:   [tex]y=1[/tex],   [tex]x=2[/tex],   [tex]z=10[/tex]

Find:   [tex]k=?[/tex]

Formula:   [tex]y=\frac{kx^2}{k}[/tex]

Solution:

[tex]y=\frac{kx^2}{y}\\1=\frac{(2)^2k}{10}\\1=\frac{4k}{10}\\4k=(10)(1)\\4k=10\\\frac{4k}{4}=\frac{10}{4}\\k=\frac{10}{4}\\\boldsymbol{k=\frac{5}{2}}[/tex]

For the value of y:

Given:   [tex]k=\frac{5}{2}[/tex],   [tex]x=4[/tex],   [tex]z=5[/tex]

Find:   [tex]y=?[/tex]

Formula:   [tex]y=\frac{kx^2}{z}[/tex]

Solution:

[tex]y=\frac{kx^2}{z}\\y=\frac{(\frac{5}{2})(4)^2}{5}\\y=\frac{(\frac{5}{2})(16)}{5}\\y=\frac{(5)(8)}{5}\\\boxed{\boldsymbol{y=8}}[/tex]

#CarryOnLearning