Makakuha ng mabilis at malinaw na mga sagot sa IDNStudy.com. Tuklasin ang malalim na sagot sa iyong mga tanong mula sa aming komunidad ng mga bihasang propesyonal.

Find two real numbers whose difference is 40 and whose product is minimum.

Sagot :

Let [tex]x[/tex] and [tex]y[/tex] be the two numbers. We assume that [tex]x[/tex] is greater than [tex]y[/tex]. Then [tex]x-y =40[/tex] which implies that [tex]y = x-40.[/tex]
Their product P is [tex]P = x(x-40) = x^2-40x[/tex]. To find the minimum, we should find the first derivative and set it to zero:
[tex]\frac{dP}{dx} =2x-40= 0.[/tex]
By the second derivative test, since [tex]\frac{d^2 P}{dx^2} = 2 > 0[/tex]
then [tex]P[/tex] has a minimum at [tex]x[/tex].
Therefore, [tex]x = 20[/tex] and the other number is [tex]x-40=20-40=-20[/tex].
Indeed, their difference is [tex]20-(-20)=40.[/tex]