Maligayang pagdating sa IDNStudy.com, ang iyong platform para sa lahat ng iyong katanungan! Ang aming mga eksperto ay handang magbigay ng malalim na sagot at praktikal na solusyon sa lahat ng iyong mga tanong.

Find two real numbers whose difference is 40 and whose product is minimum.

Sagot :

Let [tex]x[/tex] and [tex]y[/tex] be the two numbers. We assume that [tex]x[/tex] is greater than [tex]y[/tex]. Then [tex]x-y =40[/tex] which implies that [tex]y = x-40.[/tex]
Their product P is [tex]P = x(x-40) = x^2-40x[/tex]. To find the minimum, we should find the first derivative and set it to zero:
[tex]\frac{dP}{dx} =2x-40= 0.[/tex]
By the second derivative test, since [tex]\frac{d^2 P}{dx^2} = 2 > 0[/tex]
then [tex]P[/tex] has a minimum at [tex]x[/tex].
Therefore, [tex]x = 20[/tex] and the other number is [tex]x-40=20-40=-20[/tex].
Indeed, their difference is [tex]20-(-20)=40.[/tex]