IDNStudy.com, ang iyong destinasyon para sa mabilis at kaugnay na mga sagot. Magtanong at makakuha ng detalyadong sagot mula sa aming komunidad ng mga eksperto na may kaalaman.

Find two real numbers whose difference is 40 and whose product is minimum.

Sagot :

Let [tex]x[/tex] and [tex]y[/tex] be the two numbers. We assume that [tex]x[/tex] is greater than [tex]y[/tex]. Then [tex]x-y =40[/tex] which implies that [tex]y = x-40.[/tex]
Their product P is [tex]P = x(x-40) = x^2-40x[/tex]. To find the minimum, we should find the first derivative and set it to zero:
[tex]\frac{dP}{dx} =2x-40= 0.[/tex]
By the second derivative test, since [tex]\frac{d^2 P}{dx^2} = 2 > 0[/tex]
then [tex]P[/tex] has a minimum at [tex]x[/tex].
Therefore, [tex]x = 20[/tex] and the other number is [tex]x-40=20-40=-20[/tex].
Indeed, their difference is [tex]20-(-20)=40.[/tex]