Suriin ang malawak na saklaw ng mga paksa sa IDNStudy.com. Magtanong ng anumang bagay at makatanggap ng kumpleto at eksaktong sagot mula sa aming komunidad ng mga propesyonal.
Sagot :
Answer:
4kph
Step-by-step explanation:
Let x be the speed of the boat
Speed of the river = 2 kph
Total time spent = 8 hours
Distance = 12 km
Speed of the boat upstream ( against the river current) = x - 2
Speed of the boat downstream ( along with the current ) = x +2
The formula for t = d/s
Where
d is distance
s is speed
Therefore the working equation would be
time for downstream + time for upstream = 8 hours
[tex]\frac{12}{x+2} + \frac{12}{x-2} = 8[/tex]
Multiplying both sides (x+2)(x-2) by for the purpose of eliminating fractions
[tex]\frac{12(x+2)(x-2)}{x+2} + \frac{12(x+2)(x-2)}{x-2} = 8(x+2)(x-2)\\[/tex]
Cancel same terms
12(x-2) + 12(x+2) = 8(x+2)(x-2)
Solving further
[tex]12x-24+12x+24 = 8x^2 - 32[/tex]
[tex]24 x = 8x^2 - 32\\8x^2 -24x- 32 = 0\\x^2 - 3x -4 = 0\\\\\text {Factoring}\\(x-4)(x+1) = 0[/tex]
Finding the roots
x-4 = 0
x = 4
x+1 = 0
x = -1
Disregarding the negative value of x ,
The answer therefore is 4 kph for the speed of the boat in still water
Checking
[tex]\frac{12}{4+2} + \frac{12}{4-2} = 8\\2+6 =8\\8 =8[/tex]
#CarryOnLearning
Maraming salamat sa iyong aktibong pakikilahok. Magpatuloy sa pagtatanong at pagbabahagi ng iyong mga ideya. Ang iyong kaalaman ay mahalaga sa ating komunidad. Bawat tanong ay may sagot sa IDNStudy.com. Salamat at sa muling pagkikita para sa mas maraming solusyon.