Suriin ang IDNStudy.com para sa malinaw at detalyadong mga sagot. Alamin ang mga maaasahang sagot sa iyong mga tanong mula sa aming malawak na kaalaman sa mga eksperto.


[tex] \sqrt{87} \: \: \: is \: between \: \: \: \: and \: \: \\ [/tex]
[tex] \sqrt{20} \: \: is \: between \: \: \: \: \: and \: \: \: [/tex]
[tex] \sqrt{26} \: \: is \: between \: \: \: and[/tex]
[tex] \sqrt{123} \: \: is \: between \: \: \: and[/tex]
[tex] \sqrt{214} \: \: is \: between \: \: \: and[/tex]


Sagot :

Step-by-step explanation:

\usepackage{amsmath}

\begin{document}

one centered formula, without label:

\begin{equation*}

a x^2 + b x + c = 0

\end{equation*}

one centered formula, with label:

\begin{equation}

a x^2 + b x + c = 0

\end{equation}

several centered formulas, without label:

\begin{gather*}

a x + b = 0 \\

a x^2 + b x + c = 0 \\

a x^3 + b x^2 + c x + d = 0

\end{gather*}

several centered formulas, one label for all of them:

\begin{equation}

\begin{gathered}

a x + b = 0 \\

a x^2 + b x + c = 0 \\

a x^3 + b x^2 + c x + d = 0

\end{gathered}

\end{equation}

several centered formulas, each with its own label

\begin{gather}

a x + b = 0 \\

a x^2 + b x + c = 0 \\

a x^3 + b x^2 + c x + d = 0

\end{gather}

several formulas, any alignment, without label:

\begin{flalign*}

10xy^2+15x^2y-5xy & = 5\left(2xy^2+3x^2y-xy\right) = \\

& = 5x\left(2y^2+3xy-y\right) = \\

& = 5xy\left(2y+3x-1\right)

\end{flalign*}

several formulas, any alignment, each with its own label:

\begin{flalign}

10xy^2+15x^2y-5xy & = 5\left(2xy^2+3x^2y-xy\right) = \\

& = 5x\left(2y^2+3xy-y\right) = \\

& = 5xy\left(2y+3x-1\right)

\end{flalign}

several formulas, any alignment, one label for all of them

\begin{equation}

\begin{split}

10xy^2+15x^2y-5xy & = 5\left(2xy^2+3x^2y-xy\right) = \\

& = 5x\left(2y^2+3xy-y\right) = \\

& = 5xy\left(2y+3x-1\right)

\end{split}

\end{equation}

splitting a long formula on several lines. The first line is left-aligned, the last one is right-aligned, all the others are centered:.

\begin{multline}

\left(1+x\right)^n = 1 + nx + \frac{n\left(n-1\right)}{2!}x^2 +\\

+ \frac{n\left(n-1\right)\left(n-2\right)}{3!}x^3 +\\

+ \frac{n\left(n-1\right)\left(n-2\right)\left(n-3\right)}{4!}x^4 + \dots

\end{multline}

subordinate numbering:

\begin{subequations}

\begin{gather}

a x + b = 0 \\

a x^2 + b x + c = 0 \\

a x^3 + b x^2 + c x + d = 0

\end{gather}

\end{subequations}

boxed formula:

\begin{equation*}

\boxed{a x^2 + b x + c = 0}

\end{equation*}

\end{document}