Answered

Sumali sa IDNStudy.com at tuklasin ang komunidad ng mga taong handang tumulong. Tuklasin ang malalim na sagot sa iyong mga tanong mula sa aming komunidad ng mga bihasang propesyonal.

find the values of the trigonometric functions of θ if tan θ = 3/4 and is in the 3rd quadrant.

Sagot :

sin = -3/5
cos = -4/5
tan = 3/4
csc = -5/3
sec = -5/4
cot = 4/3
I'm gonna use alpha instead of theta..
If tan α = 3/4, then we can say that y/x is 3/4
y = 3
x = 4
--------------------------
If we are to draw a triangle in representation for the angle, x and y are the legs of the triangle. For us to find the hypotenuse, let us use Pythagorean Theorem.
c² = x² + y²
-------------------------
c² = x² + y²
c² = 4² + 3²
c² = 25
c = √25
c = 5
-------------------------
sine α = opposite/hypotenuse
or in this case,
sine α = y/c
Since y in the 3rd quadrant is negative, then take the negative of y 
sin α = -3/5
-------------------------
cosine α = adjacent/hypotenuse
or in this case,
cos α = x/c
Since x in the 3rd quadrant is negative, then take the negative of x
cos α = -4/5
------------------------
cotangent α = cosine/sine
cot α = (4/5)/(3/5)
5 will be cancelled out
Both x and y in the 3rd quadrant are negative and negative over negative is positive, then it will have a positive sign
cot α = 4/3 or merely the reciprocal of tangent
-----------------------
secant α = 1/cosine α
sec α = 1/(4/5)
Since x in the 3rd quadrant is negative, then take the negative of x
sec α = -5/4
----------------------
cosecant = 1/sine α
csc α = 1/(3/5)
Since y in the 3rd quadrant is negative, then take the negative of y
csc α = -5/3
---------------------
see attachment

View image Shinalcantara