Answered

Makakuha ng detalyadong mga sagot sa lahat ng iyong tanong sa IDNStudy.com. Hanapin ang impormasyon na kailangan mo nang mabilis at madali sa pamamagitan ng aming komprehensibo at eksaktong platform ng tanong at sagot.

what is the derivative of y=ln(cosh2x) :)

Sagot :

[tex]\large \bold {SOLUTION}[/tex]

[tex]\large\sf{y = ln( \cosh(2x) ) }[/tex]

[tex]\small\textsf{By the Chain Rule of differentiation, let u = cosh (2x)}[/tex]

[tex]\small\sf{(f[g(x)])' = f'[g(x)] \: \: • \: \: g'(x)}[/tex]

[tex]\small\sf{y' = \dfrac{d}{du} \: ln(u) \: \:• \: \: \dfrac{d}{dx} \: \cosh(2x) }[/tex]

[tex]\small\textsf{Set aside the first term and differentiate the second term}[/tex]

[tex]\small\textsf{By the Chain Rule of differentiation, let u = 2x}[/tex]

[tex]\small\sf{ \dfrac{d}{du} \: \cosh(u) \: \: • \: \: \dfrac{d}{dx} \: 2x }[/tex]

[tex]\small\sf{y' = \dfrac{d}{du} \: ln(u) \: \: • \: \: \sinh(u) \: \: • \: \: 2 }[/tex]

[tex]\small\textsf{Return u = 2x as the substitution}[/tex]

[tex]\small\sf{y' = \dfrac{d}{du} \: ln(u) \: \: • \: \: \sinh(2x) \: \: • \: \: 2 }[/tex]

[tex]\small\sf{y' = \dfrac{1}{u} \: \: • \: \: \sinh(2x) \: \: • \: \: 2 }[/tex]

[tex]\small\textsf{Return the main u-substitution}[/tex]

[tex]\small\sf{y' = \dfrac{1}{ \cosh(2x) } \: \: • \: \: \sinh(2x) \: \: • \: \: 2 }[/tex]

[tex]\small\sf{y' = \dfrac{1}{ \cosh(2x) } \: \: • \: \: 2\sinh(2x) }[/tex]

[tex]\therefore\small\sf{y' = ln( \cosh(2x) ) \implies\small\boxed{\green{\sf{ \frac{2 \sinh(2x) }{ \cosh(2x) } }}}}[/tex]

[tex]\small\textsf{\#AlwaysBeTheGreat}[/tex]