IDNStudy.com, kung saan ang mga eksperto at komunidad ay nagtutulungan para sagutin ang iyong mga tanong. Hanapin ang mga solusyong kailangan mo nang mabilis at madali sa tulong ng aming mga eksperto.
Sagot :
Given: Radius of Cylinder= 1m
Height of Cylinder=2m
Volume of Cylinder= πr²h
=π(1m)²(2m)
2πm³
Since the radius of the base is 1m we can assume that the small cone has 1m radius also.
Volume of Small Cone=1/3πr²h
2πm³=1/3π(1m)²h (Volume of Cylinder=Volume of Small Cone)
Solving for h.
h=6m
Substituting h=6m
Volume of Small Cone=1/3π(1m)²(6m)
Volume of Small Cone=2πm³ or 6.28m³
By Pythagorean Theorem,
l²=h²+r²
l=√(6m)²+(1m)²
l=√37 m or 6.08m
Height of Cylinder=2m
Volume of Cylinder= πr²h
=π(1m)²(2m)
2πm³
Since the radius of the base is 1m we can assume that the small cone has 1m radius also.
Volume of Small Cone=1/3πr²h
2πm³=1/3π(1m)²h (Volume of Cylinder=Volume of Small Cone)
Solving for h.
h=6m
Substituting h=6m
Volume of Small Cone=1/3π(1m)²(6m)
Volume of Small Cone=2πm³ or 6.28m³
By Pythagorean Theorem,
l²=h²+r²
l=√(6m)²+(1m)²
l=√37 m or 6.08m
Please refer to the attached photo for the solution.
V = [tex] \frac{9}{32} [/tex] π m³
LAsmallcone = [tex] \frac{9 \sqrt{5} }{16} [/tex] π m²
V = [tex] \frac{9}{32} [/tex] π m³
LAsmallcone = [tex] \frac{9 \sqrt{5} }{16} [/tex] π m²
Ang iyong aktibong pakikilahok ay mahalaga sa amin. Magpatuloy sa pagtatanong at pagbibigay ng mga sagot. Sama-sama tayong lumikha ng isang masiglang komunidad ng pagkatuto. Bawat tanong ay may sagot sa IDNStudy.com. Salamat sa pagpili sa amin at sa muling pagkikita.